refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1163 results
Sort by

Filters

Technology

Platform

accession-icon GSE23895
Selenium toxicity but not deficient or super-nutritional selenium status vastly alters the transcriptome in rodents
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

Protein and mRNA levels for several selenoproteins, such as glutathione peroxidase-1 (Gpx1), are down-regulated dramatically by selenium (Se) deficiency.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE9020
Comparative Genomics Identifies Gene Targets for Retinoic Acid in the Embryonic Zebrafish Hearts
  • organism-icon Danio rerio
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Retinoic acid (RA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin activate distinct ligand-dependent transcription factors, and both cause cardiac malformation and heart failure in zebrafish embryos. We hypothesized that they cause this response by hyperactivating a common set of genes critical for heart development. To test this, we used microarrays to measure transcripts changes in hearts isolated from zebrafish embryos 1,2,4 and 12 h after exposure to 1M RA. We used hierarchical clustering to compare the transcriptional responses produced in the embryonic heart by RA and TCDD. We could identify no early responses in common between the two agents. However, at 12 h both treatments produced a dramatic downregulation of a common cluster of cell cycle progression genes, which we term the Cell Cycle Gene Cluster (CCGC). This was associated with a halt in heart growth. These results suggest that RA and TCDD ultimately trigger a common transcriptional response associated with heart failure, but not through the direct activation of a common set of genes. Among the genes rapidly induced by RA was Nr2F5, a member of the COUP-TF family of transcription repressors. We found that induction of Nr2F5 was both necessary and sufficient for the cardiotoxic response to RA.

Publication Title

Comparative genomics identifies genes mediating cardiotoxicity in the embryonic zebrafish heart.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33981
Microarray analysis of 2,3,7,8-Tetrachlorodibenzo-p-dioxin Exposed Amputated Adult Zebrafish Heart Ventricles
  • organism-icon Danio rerio
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

The purpose of this experiment is to understand which transcripts are differentially expressed following exposure to TCDD.

Publication Title

TCDD inhibits heart regeneration in adult zebrafish.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE42299
Expression profiles of C2C12 myotubes in response to PGC-1 (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha) overexpression and/or iron chelation
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Mitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process, and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative datasets that can be leveraged to explore post-transcriptional and post-translational processes that are essential for mitochondrial adaptation.

Publication Title

Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE24243
Murine skin gene expression analysis of skin-specific Scd1-deficient and control mice
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

To help elucidate the metabolic changes in the skin that contribute to the obesity resistance and skin pathology in mice lacking Scd1, we performed microarray analysis of skin gene expression in male skin Scd1 knockout (SKO) and Scd1 flox/flox control (Lox) mice fed a standard rodent diet.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE63325
The cohesin associated factor Wapal is required for proper polycomb-mediated gene silencing
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58328
Expression data from mouse spleen CD11c dendritic cells, bone marrow Gr1DC11b cells, and RAW264.7 cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

We investigated in mouse models how enhanced coagulation activation due to a common disease polymorphism in coagulation factor V (fV Leiden Arg506Gln) modifies the host response to infection and inflammation

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63291
The cohesin offloading factor Wapal is required for proper polycomb-mediated gene silencing [array]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

The cohesin offloading protein Wapal also acts as a polycomb factor in flies. We examined its role in transcriptional role in murine embryonic stem cells (ESCs)

Publication Title

The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-GEOD-11893
Transcription profiling of zebrafish embryos reveals AHR Activation by TCDD Downregulates Sox9b expression producing jaw malformation
  • organism-icon Danio rerio
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Exposure to environmental contaminants can disrupt normal development of the early vertebrate skeleton. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) impairs craniofacial skeletal development across many vertebrate species and its effects are especially prominent in early life stages of fish. TCDD activates the aryl hydrocarbon receptor (AHR), a transcription factor that mediates most if not all TCDD responses. We investigated the transcriptional response in the developing zebrafish jaw following TCDD exposure using DNA microarrays. Zebrafish larvae were exposed to TCDD at 96 h postfertilization (hpf) and jaw cartilage tissue was harvested for microarray analysis at 1, 2, 4 and 12 h postexposure (hpe). Numerous chondrogenic transcripts were misregulated by TCDD in the jaw. Comparison of transcripts altered by TCDD in jaw with transcripts altered in embryonic heart showed that the transcriptional responses in the jaw and the heart were strikingly different. Sox9b, a critical chondrogenic transcription factor, was the most significantly reduced transcript in the jaw. We hypothesized that the TCDD reduction of sox9b expression plays an integral role in affecting formation of the embryonic jaw. Morpholino knock down of sox9b expression demonstrated that partial reduction of sox9b expression alone was sufficient to produce a TCDD-like jaw phenotype. Heterozygous sox9b deletion mutant embryos were sensitized to TCDD. Lastly, embryos injected with sox9b mRNA and then exposed to TCDD blocked TCDD-induced jaw toxicity in approximately 14% of sox9b-injected embryos. These results suggest that reduced sox9b expression in TCDD-exposed zebrafish embryos contributes to jaw malformation. Experiment Overall Design: Three independent replicate microarray time course experiments were performed comparing transcript levels between TCDD-exposed and control zebrafish. For each experiment, zebrafish were exposed to TCDD for 1 h starting at 96 hpf as described above. For each time point (97, 98, 100 and 108 hpf) and treatment jaw samples were pooled from 10 dissections for RNA isolation and hybridization with Affymetrix zebrafish arrays (Affymetrix, Santa Clara, CA). Each microarray contains roughly 14,900 probes corresponding to approximately 30% of the zebrafish genome. For each array, total RNA (1 µg) was isolated from 10 jaw microdissections with the QIAGEN RNeasy Mini kit following the manufacturer’s protocol (QIAGEN, Valencia, CA). The One-Cycle Target Labeling and Control Reagents kit was used to synthesize cDNA and biotinylated cRNA following the manufacturer’s protocol (Affymetrix, Santa Clara, CA). Biotin-labeled cRNA (15 µg) was fragmented and hybridized onto Affymetrix Zebrafish Genechip Arrays following the protocol in the Affymetrix Genechip Expression Analysis Technical Manual. Following hybdrization, the arrays were washed and stained with streptavidin-phycoerythrin on an Affymetrix Fluidics Station 400 using the protocol EukGE WS2v4. Arrays were scanned with an Agilent Gene Array Scanner.

Publication Title

No associated publication

Sample Metadata Fields

Subject

View Samples
accession-icon GSE19512
Gene expression profiling of in vivo derived induced and natural FOXP3+ regulatory T cells in the mouse
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

The relative contribution of induced and natural Foxp3+ regulatory T cells (iTreg and nTreg cells, respectively) to the maintenance of tolerance is unknown. We examined their respective roles by in vivo adoptive transfer immunotherapy of newborn Foxp3-deficient BALB/c mice. Survival, weight gain, tissue infiltration, T cell activation, and the concentration of proinflammatory cytokines were used as outcome measurements. Treatment with iTreg cells alone was not successful. While effective in preventing death, treatment with nTreg cells alone was associated with chronic inflammation and autoimmunity. Outcomes markedly improved when conventional T (Tconv) cells were transferred together with the nTreg cells, where 10% of the peripheral Treg cell pool was derived by in-situ conversion. This enhancement depended upon the capacity of Tconv cells to express Foxp3.

Publication Title

A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact