refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1172 results
Sort by

Filters

Technology

Platform

accession-icon GSE5198
Transcriptional profiling of mouse ileum in response to colonization with a zebrafish or mouse gut microbiota
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

We compared gene expression in the small intestine (ileum) of mice that were either (i) germ-free, (ii) colonized with a conventional mouse cecal microbiota, (iii) colonized with a conventional zebrafish gut microbiota, or (iv) colonized with Pseudomonas aeruginosa PAO1.

Publication Title

Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6632
Hepatocellular carcinoma follows loss of liver-gender specificity in mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

We are investigating hepatic transcriptional responses associated with castration and tumorigenic hepatitis induced by Helicobacter hepaticus infection in mature male A/JCr mice

Publication Title

Hepatocellular carcinoma associated with liver-gender disruption in male mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9097
H. hepaticus infection and liver cancer
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We are investigating the transcriptional response of mice infected with Helicobacter hepaticus and links to liver cancer

Publication Title

Genetic susceptibility to chronic hepatitis is inherited codominantly in Helicobacter hepaticus-infected AB6F1 and B6AF1 hybrid male mice, and progression to hepatocellular carcinoma is linked to hepatic expression of lipogenic genes and immune function-associated networks.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48383
ChIp-Chip using RNAP II, CREB C/EBPb and cJun antibody in undifferentiated or differentiated keratinocytes
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Combinatorial recruitment of CREB, C/EBPβ and c-Jun determines activation of promoters upon keratinocyte differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE11382
Liver and cecum from mice exposed to aflatoxin B1 (AFB1) and/or Helicobacter hepaticus
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

We evaluated aflatoxin B1-induced liver tumor promotion by H. hepaticus. Microarrays of liver and cecum from female mice were used to evaluate the individual and combined transcriptional effects of AFB1 and H. hepaticus

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48382
ChIp-Chip using RNAP II, CREB C/EBPb and cJun antibody in undifferentiated or differentiated keratinocytes (expression)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Combinatorial recruitment of CREB, C/EBPb and Jun determines activation of promoters upon keratinocyte differentiation

Publication Title

Combinatorial recruitment of CREB, C/EBPβ and c-Jun determines activation of promoters upon keratinocyte differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE26225
Nonalcoholic fatty liver disease in AxB mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Spontaneous insulin resistance and NAFLD emerged in AxB F1 male mice with parent-of-origin effects such that AB6F1 (AJ dam x B6 sire) were susceptible whereas B6AF1 (B6 dam x AJ sire) were resistant.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE70852
Dorsal root ganglia (DRG) and Sciatic nerve (SCN) in female BTBR ob/ob mice - diabetic peripheral neuropathy
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Female mouse models of diabetic peripheral neuropathy (DPN) have not yet been identified. Our aim is firstly to demonstrate that female BTBR ob/ob mice display robust DPN and secondly, to perform relevant comparisons with non-diabetic and gender-matched controls. Lastly, microarray technology was employed to identify dysregulated genes and pathways in the SCN and DRG of female BTBR mice. Dorsal root ganglia (DRG) and sciatic nerve (SCN) were removed from female mice, RNA isolated and processed for gene expression profiling to identify differentially expressed genes using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE30767
Vascular endothelial growth factor (VEGF) isoform regulation of early forebrain development
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

This work was designed to determine the role of the vascular endothelial growth factor A (VEGF) isoforms during early neuroepithelial development in the mammalian central nervous system (CNS), specifically in the forebrain. An emerging model of interdependence between neural and vascular systems includes VEGF, with its dual roles as a potent angiogenesis factor and neural regulator. Although a number of studies have implicated VEGF in CNS development, little is known about the role that the different VEGF isoforms play in early neurogenesis. We used a mouse model of disrupted VEGF isoform expression that eliminates the predominant brain isoform, VEGF164, and expresses only the diffusible form, VEGF120. We tested the hypothesis that VEGF164 plays a key role in controlling neural precursor populations in developing cortex. We used microarray analysis to compare gene expression differences between wild type and VEGF120 mice at E9.5, the primitive stem cell stage of the neuroepithelium. We quantified changes in PHH3-positive nuclei, neural stem cell markers (Pax6 and nestin) and the Tbr2-positive intermediate progenitors at E11.5 when the neural precursor population is expanding rapidly. Absence of VEGF164 (and VEGF188) leads to reduced proliferation without an apparent effect on the number of Tbr2-positive cells. There is a corresponding reduction in the number of mitotic spindles that are oriented parallel to the ventricular surface relative to those with a vertical or oblique angle. These results support a role for the VEGF isoforms in supporting the neural precursor population of the early neuroepithelium.

Publication Title

Vascular endothelial growth factor (VEGF) isoform regulation of early forebrain development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49283
Translational activation of developmental mRNAs during neonatal mouse testis development
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

The sequence of gene regulatory events that drive neonatal germ cell development in the mammalian testis is not yet clear. We assessed changes in mRNA utilization in the neonatal testis at 1 and 4 dpp, times when the testis contains quiescent gonocytes (1 dpp) and proliferating spermatogonia (4 dpp). There are not thought to be major changes in the nature or number of somatic cells over that interval.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact