refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 948 results
Sort by

Filters

Technology

Platform

accession-icon GSE111491
Prenatal selective serotonin reuptake inhibitor (SSRI) exposure induces working memory and social recognition deficits by disrupting inhibitory synaptic networks in male mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed antidepressant drugs in pregnant women. Given that SSRIs can cross the placental and blood-brain barriers, these drugs potentially affect serotonergic neurotransmission and neurodevelopment in the fetus. Although no gross SSRI-related teratogenic effect has been reported, infants born following prenatal exposure to SSRIs have a higher risk for various behavioral abnormalities. Therefore, we examined the effects of prenatal fluoxetine, the most commonly prescribed SSRI, on social and cognitive behavior in mice. Intriguingly, chronic in utero fluoxetine treatment impaired working memory and social novelty recognition in adult males with augmented spontaneous inhibitory synaptic transmission onto the layer 5 pyramidal neurons in the medial prefrontal cortex (mPFC). Moreover, fast-spiking interneurons in the layer 5 mPFC exhibited enhanced basal intrinsic excitability, augmented serotonin-induced neuronal excitability, and increased inhibitory synaptic transmission onto the layer 5 pyramidal neurons due to augmented 5-HT2A receptor (5-HT2AR) signaling. More importantly, the observed behavioral deficits of in utero fluoxetine-treated mice could be reversed by acute systemic application of 5-HT2AR antagonist. Taken together, our findings support the notion that alterations in serotonin-mediated inhibitory neuronal modulation result in reduced cortical network activities and cognitive impairment following prenatal exposure to SSRIs.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE26751
Gene expression of cerebellar Purkinje cells and granule cell layer
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26749
Gene expression of cerebellar Purkinje cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We performed gene-expression analysis of mouse Purkinje cells as a model single-type neuron. DNA microarray analysis detected at least 7,055 genes in Purkinje cells, most of which are classified into functional molecule categories.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26750
Gene expression of cerebellar granule cell layer
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

We performed gene-expression analysis of mouse cerebellar granule cell layer as compared to that of Purkinje cells. DNA microarray analysis detected genes in cerebellar granule cell layer, most of which are classified into functional molecule categories.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon E-MTAB-2906
Toxicogenomic analysis in liver of zebrafish exposed to polluted groundwater
  • organism-icon Danio rerio
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression microarrays were performed to investigate the molecular effects of exposure to environmental polluted groundwater. Zebrafish was treated with polluted waters collected from dumps located upstream and downstream a sanitary landfills. Gene expression profiling of zebrafish liver was analyzed after acute exposure to sampled waters.

Publication Title

Cross-species toxicogenomic analyses and phenotypic anchoring in response to groundwater low-level pollution.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE84949
Expression data from distal ileum of mice administered lactic acid bacteria, Lactococcus lactis C59 and Lactobacillus rhamnosus GG
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

This study aimed to investigate the effects of oral administration of lactic acid bacteria (LAB) on gene expression in murine ileum.

Publication Title

The distinct effects of orally administered Lactobacillus rhamnosus GG and Lactococcus lactis subsp. lactis C59 on gene expression in the murine small intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64004
Expression data from ileum of mice suffered from subchronic and mild social defeat stress
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This study aimed to investigate the effects of depression on transcriptome in ileum using a subchronic and mild social defeat stress (sCSDS) model. In addition to exhibiting social deficit and hyperphagia-like behavior, the sCSDS mice keep much more water in their body than control mice. In order to investigate the effect of social defeat stress on not only central nervous system but also function of gastrointestinal tract, the gene expression in ileum of stressed mice was compared with control mice.

Publication Title

Omics Studies of the Murine Intestinal Ecosystem Exposed to Subchronic and Mild Social Defeat Stress.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE60639
Transcriptome_Methylome_Sirt1KOESC
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Sirt1 Regulates DNA Methylation and Differentiation Potential of Embryonic Stem Cells by Antagonizing Dnmt3l.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60500
Genomewide gene expression analysis of murine Sirt1 wild-type or knock-out embryonic stem cells (ESCs)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Stem-cells and transformed cancer cells specifically express a polycomb repressive complex subtype, PRC4 which characteristically contains Sirt1 (Sirtuin-1), a NAD+ dependent class III histone deacetylase (HDAC) and Eed2 isoform as specific members. Analyzing the transcriptiome and methylome analysis of Sirt1 deficient murine ESCs (Sirt1-/- ESC), we demonstrate that these cells repressed specifically on some genomic imprinted and germ-line related genes.

Publication Title

Sirt1 Regulates DNA Methylation and Differentiation Potential of Embryonic Stem Cells by Antagonizing Dnmt3l.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55096
Molecular Adaptations of Striatal Spiny Projection Neurons During Levodopa-Induced Dyskinesia
  • organism-icon Mus musculus
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon

Description

L-3,4-dihydroxyphenylalanine (levodopa) treatment is the major pharmacotherapy for Parkinson's disease. However, almost all patients receiving levodopa eventually develop debilitating involuntary movements (dyskinesia). While it is known that striatal spiny projection neurons (SPNs) are involved in the genesis of this movement disorder, the molecular basis of dyskinesia is not understood. In this study, we identify distinct cell-type-specific gene expression changes that occur in sub-classes of SPNs upon induction of a parkinsonian lesion followed by chronic levodopa treatment. We identify several hundred genes whose expression is correlated with levodopa dose, many of which are under the control of AP-1 and ERK signaling. In spite of homeostatic adaptations involving several signaling modulators, AP-1-dependent gene expression remains highly dysregulated in direct pathway SPNs (dSPNs) upon chronic levodopa treatment. We also discuss which molecular pathways are most likely to dampen abnormal dopaminoceptive signaling in spiny projection neurons, hence providing potential targets for antidyskinetic treatments in Parkinson's disease.

Publication Title

Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact