refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 346 results
Sort by

Filters

Technology

Platform

accession-icon GSE27948
Pharmacology of PPAR isoform agonists on mouse
  • organism-icon Mus musculus
  • sample-icon 109 Downloadable Samples
  • Technology Badge Icon

Description

Transcriptional consequences of pharmacologic PPAR a, d, & g agonist administration in murine liver, heart, kidney, and skeletal muscle

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Compound, Time

View Samples
accession-icon GSE8726
Expression Data from Sod2-/- and Sod2+/+ Mouse Erythroblasts.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

The mitochondrial superoxide dismutase (SOD2) is a major antioxidant protein which detoxifies superoxide anion radicals generated by mitochondrial respiration (Weisiger and Fridovich, J. Biol. Chem. 1973). We designed a model of oxidative stress-induced anemia caused by SOD2-deficiency (Friedman et al. J. Exp. Med. 2001). Our previous work showed that mice reconstituted with SOD2-deficient hematopoietic stem cells develop an anemia with striking similarity to human sideroblastic anemia (SA) (Friedman et al. Blood 2004; Martin et al. Exp Hematol 2005). Our overall goal was to define early events in the pathogenesis of SOD2-deficiency SA and, in particular, to identify genes involved in the response of erythroid progenitors to oxidative stress. We compared gene expression of sorted TER-119+ CD71+ erythroblasts from SOD2-/- ('KO') versus Sod2+/+ ('WT') hematopoietic stem cell recipients using cDNA microarrays.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23212
Gene expression profiling of mouse splenic Dendritic cells subsets
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

We describe a novel subset of CD8+ DCs in lymphoid organs of nave mice characterized by expression of the CX3CR1 chemokine receptor. CX3CR1+CD8+ DCs lack hallmarks of classical CD8+ DCs, including IL12 secretion, the capacity to cross-present antigen and their developmental independence of the transcriptional factor BatF3. Gene expression profiling showed that CX3CR1+CD8+ DCs resemble CD8- cDCs. The microarray analysis further revealed a unique plasmacytoid DC (PDC) gene signature of CX3CR1+ CD8+ DCs. A PDC relationship of the cells is further supported by the fact that they harbor characteristic D-J immunoglobulin gene rearrangements and that development of CX3CR1+CD8+ DCs requires E2-2, the critical transcriptional regulator of PDCs. Thus, CX3CR1+ CD8+ DCs represent a unique DC subset, related to but distinct from PDCs.

Publication Title

CX3CR1+ CD8alpha+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13093
Feeding schedule and the circadian clock shape rhythms in hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13062
The effects of temporally restricted feeding on hepatic gene expression of Cry1, Cry2 double KO mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Restricted feeding impacts the hepatic circadian clock of WT mice. Cry1, Cry2 double KO mice lack a circadian clock and are thus expected to show rhythmical gene expression in the liver. Imposing a temporally restricted feeding schedule on these mice shows how the hepatic circadian clock and rhythmic food intake regulate rhythmic transcription in parallel

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13060
The effects of temporally restricted feeding on hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Temporally restricted feeding is known to impact the circadian clock. This dataset shows the effects of temporally restricted feeding on the hepatic transcriptome.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7487
Gene profiling of pathological cardiac hypertrophy vs physiological hypertrophy
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon

Description

Cardiac hypertrophy can lead to heart failure, and is induced either by physiological stimuli eg postnatal development, chronic exercise training or pathological stimuli eg pressure or volume overload. Majority of new therapies for heart failure has mixed outcomes. A combined mouse model and oligo-array approach are used to examine whether phosphoinositide 3-kinase (p110-alpha isoform) activity is critical for maintenance of cardiac function and long-term survival in a setting of heart failure. The significance and expected outcome are to recognise genes involved in models of heart failure ie pathological- vs physiology-hypertrophy, and examine the molecular mechanisms responsible for such activity.

Publication Title

PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43044
The role of Ldb1 in hemangioblast development: genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13063
Effects of extensive fasting and subsequent feeding on hepatic transcription
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Temporally restricted feeding has a profound effect on the circadian clock. Fasting and feeding paradigms are known to influence hepatic transcription. This dataset shows the dynamic effects of refeeding mice after a 24hour fasting period.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13064
Effects of extensive fasting on hepatic transcription
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Temporally restricted feeding has a profound effect on the hepatic circadian clock. While the circadian clock is largely unaffected by by extensive fasting, many transcripts are known to be affected by a fasting paradigm. This dataset shows the effect of extensive fasting on dynamic gene expression in the liver

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact