refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1224 results
Sort by

Filters

Technology

Platform

accession-icon GSE103414
Expression data of the control and CITED1 OE ESCs
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

Trophoblast lineages, as the precursor of placenta, are essential for post-implantation embryo survival. However, the regulatory networks for trophoblast development remains incompletely understood. Here, we identified CITED1 as a regulator to induce trophoblast-like differentiation from mESCs. Overexpression of CITED1 in ESCs prompted differentiation towards trophoblast accompanying with elevated expression of trophoblast marker genes. To evaluate the ability of CITED1 to induce trophoblast differentiation at a genome-wide scale, we compared the global transcriptional profiles between CITED1 overexpressing cells and control ESCs by Affymetrix microarray analysis at day 1 and day 2 after transfection.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE111397
Expression data from cells at reprogramming day 3, 5 and 7
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The protein level of OCT4, a core pluripotency transcriptional factor, is vital for embryonic stem cell (ESC) maintenance, differentiation and somatic cell reprogramming. Although OCT4 protein is regulated at multiple scales, the role and regulatory mechanisms of OCT4 ubiquitination in reprogramming remains elusive. We identified the five lysine residues as ubiquitination sites on OCT4, and found that destruction of the ubiquitination can enhance OCT4 activity in reprogramming.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16925
Expression data from mouse ES and iPS cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

Induced pluripotent stem (iPS) cells were produced from reprogramming of somatic cells, and they are shown to possess pluripotent properties similar to embryonic stem (ES) cells. Here we used microarrays to detail the global expression pattern among the ES cells and iPS cells, as well as the original mouse embryo fibroblast (MEF), to identify important players involved in the reprogramming process.

Publication Title

iPS cells produce viable mice through tetraploid complementation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE84404
Gene expression data of islets from WT and RapKO mice
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

The mechanistic target of rapamycin complex 1 (mTORC1) regulates beta cell growth and mass; yet it remains unclear whether it also directs beta cell functional maturation. To understand the global molecular basis of the phenotype caused by the loss of Raptor in beta cells, we isolated pancreatic islets from 8-week-old RapKO and WT mice. We compared gene-expression profile by Affymetrix microarray of islets, which revealed that a number of mRNAs were dys-regulated in Raptor-deficient islets.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE14929
Myocardial expression data from gnotobiotic wild-type and Ppara-/- mice
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon

Description

Germ free (GF) and conventionalized (CONV-D) wild-type C57Bl/6 male mice in the CARB-fed, 24h fasted, and 30d trained states; plus GF and CONV-D CARB-fed Ppara-/- mice. CARB-fed indicates a standard polysaccharide-rich mouse chow diet.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE64750
Lung expression data from highly pathogenic H5N1 virus infected and uninfected mice
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Susceptible and Resistant mouse strain, e.g. DBA/2J and C57BL/6J respectively, were inoculated with a highly pathogenic H5N1 influenza A virus (A/Hong Kong/213/2003) for 72 hours.

Publication Title

Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE43716
Microarray to find CHOP/ATF5 dependent genes in response to proteasome inhibition
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE54581
Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKalpha
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

Disruption of protein folding in the endoplasmic reticulum triggers the Unfolded Protein Response (UPR), a transcriptional and translational control network designed to restore protein homeostasis. Central to the UPR is PERK phosphorylation of the alpha subunit of eIF2 (eIF2~P), which represses global translation coincident with preferential translation of mRNAs, such as ATF4 and CHOP, that serve to implement the UPR transcriptional regulation. In this study, we used sucrose gradient ultracentrifugation and a genome-wide microarray approach to measure changes in mRNA translation during ER stress. Our analysis suggests that translational efficiencies vary across a broad range during ER stress, with the majority of transcripts being either repressed or resistant to eIF2~P, while a notable cohort of key regulators are subject to preferential translation. From this latter group, we identify IBTKa as being subject to both translation and transcriptional induction during eIF2~P in both cell lines and a mouse model of ER stress. Translational regulation of IBTKalpha mRNA involves the stress-induced relief of two inhibitory uORFs in the 5'-leader of the transcript. Depletion of IBTKalpha by shRNA reduced viability of cultured cells coincident with increased caspase 3/7 cleavage, suggesting that IBTKalpha is a key regulator in determining cell fate during the UPR.

Publication Title

Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKα.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10964
Virus-Induced Airway Disease in Mice (C57BL/6J, d21/d49)
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of gene expression in lungs of C57BL/6J mice that develop chronic airway disease phenotypes after a single Sendai virus infection, compared with mice treated with UV-inactivated virus.

Publication Title

Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

Sample Metadata Fields

Sex, Time

View Samples
accession-icon GSE3621
R6/1 brain hemisphere time series gene expression
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

HD R6/1 transgenic mouse line brain hemispheres dissected. RNA targets were created for transgenics and wildtypes at time points 18, 22 and 27 weeks. Profiles and data analysis performed using the Bioconductor software and linear model contrasts using LIMMA on RMA probeset summarys.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact