refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 174 results
Sort by

Filters

Technology

Platform

accession-icon GSE24705
mRNA expression data from iPSCs, ntESCs and iPSC-nt-ESCs
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon

Description

We generated three kinds of genetically identical mouse reprogrammed cells: induced pluripotent stem cells (iPSCs), nuclear transfer embryonic stem cells (ntESCs) and iPSC-nt-ESCs that are established after successively reprogramming of iPSCs by nuclear transfer (NT). NtESCs show better developmental potential than iPSCs, whereas iPSC-nt-ESCs display worse developmental potential than iPSCs.

Publication Title

Different developmental potential of pluripotent stem cells generated by different reprogramming strategies.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE97773
Expression data from human umbilical cord-derived mesenchymal stem cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mesenchymal stem cells (MSCs) have been shown to exert therapeutic effects on various autoimmune diseases. However, such therapeutic effect is not always achieved. Among many reasons, MSC culture methodologies may account for the these differences. It is known that oxygen concentration could profoundly affect the properties of MSCs. Therefore, we compared human umbilical cord derived MSCs cultured under hypoxic and normoxic conditions.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83326
Hepatic gene expression data from cadmium-exposed mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Environmental cadmium, with a high average dietary intake, is a severe public health risk. However, the long-term health implications of environmental exposure to cadmium in different life stages remain unclear.

Publication Title

Sex-Dependent Effects of Cadmium Exposure in Early Life on Gut Microbiota and Fat Accumulation in Mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE39401
Expression data of WHV/c-myc transgenic mice at preneoplastic and neoplastic stages
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

The WHV/c-myc transgenic mouse is an animal model of hepatocarcinogenesis that can exquisitely mimic the cancer staging in human Hepatocellular carcinoma (HCC), in which the c-myc oncogene is activated by adjacent woodchuck hepatitis virus (WHV) DNA sequences. Compared to other models of c-myc transgenic mice, WHV/c-myc mice stably develop HCC with a relatively short latent period of 8 to 12 months, with a high (near 100%) tumor incidence.

Publication Title

No associated publication

Sample Metadata Fields

Age

View Samples
accession-icon GSE55489
Liver expression data from 31 mouse strains treated with vehicle or isoniazid for 3 days
  • organism-icon Mus musculus
  • sample-icon 215 Downloadable Samples
  • Technology Badge Icon

Description

Isoniazid induced varying degrees of hepatic steatosis in an inbred strain Mouse Diversity Panel (MDP) study. RNA was isolated from all animals for analysis of gene expression changes in the liver. The objective of this study was to identify gene expression changes that drive isoniazid-induced steatosis.

Publication Title

A systems biology approach utilizing a mouse diversity panel identifies genetic differences influencing isoniazid-induced microvesicular steatosis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE17933
Transcriptional Biomarkers to Predict Female Mouse Lung Tumors in Rodent Cancer Bioassays - A 26 Chemical Set
  • organism-icon Mus musculus
  • sample-icon 190 Downloadable Samples
  • Technology Badge Icon

Description

The process for evaluating chemical safety is inefficient, costly, and animal intensive. There is growing consensus that the current process of safety testing needs to be significantly altered to improve efficiency and reduce the number of untested chemicals. In this study, the use of short-term gene expression profiles was evaluated for predicting the increased incidence of mouse lung tumors. Animals were exposed to a total of 26 diverse chemicals with matched vehicle controls over a period of three years. Upon completion, significant batch-related effects were observed. Adjustment for batch effects significantly improved the ability to predict increased lung tumor incidence. For the best statistical model, the estimated predictive accuracy under honest five-fold cross-validation was 79.3% with a sensitivity and specificity of 71.4 and 86.3%, respectively. A learning curve analysis demonstrated that gains in model performance reached a plateau at 25 chemicals, indicating that the size of the current data set was sufficient to provide a robust classifier. The classification results showed a small subset of chemicals contributed disproportionately to the misclassification rate. For these chemicals, the misclassification was more closely associated with genotoxicity status than efficacy in the original bioassay. Statistical models were also used to predict dose-response increases in tumor incidence for methylene chloride and naphthalene. The average posterior probabilities for the top models matched the results from the bioassay for methylene chloride. For naphthalene, the average posterior probabilities for the top models over-predicted the tumor response, but the variability in predictions were significantly higher. The study provides both a set of gene expression biomarkers for predicting chemically-induced mouse lung tumors as well as a broad assessment of important experimental and analysis criteria for developing microarray-based predictors of safety-related endpoints.

Publication Title

Use of short-term transcriptional profiles to assess the long-term cancer-related safety of environmental and industrial chemicals.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Subject

View Samples
accession-icon GSE57642
Expression data from intestinal epithelial cells (IECs)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57641
Expression data from intestinal epithelial cells (IECs) [Mouse430_2 array]
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Polycomb group (PcG) proteins are epigenetic silencers whose dysregulation is frequently linked to cancer via mechanisms that remain unclear. Using conditional knock-out mice in a colitis-associated colorectal cancer (CAC) model, we found that Bmi1 and Mel18 are important initiation and maintenance factors during CAC tumorigenesis. Epithelial depletion of both Bmi1 and Mel18, but not either gene alone, significantly reduces tumor growth and multiplicity.

Publication Title

BMI1 and MEL18 Promote Colitis-Associated Cancer in Mice via REG3B and STAT3.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13093
Feeding schedule and the circadian clock shape rhythms in hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13062
The effects of temporally restricted feeding on hepatic gene expression of Cry1, Cry2 double KO mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Restricted feeding impacts the hepatic circadian clock of WT mice. Cry1, Cry2 double KO mice lack a circadian clock and are thus expected to show rhythmical gene expression in the liver. Imposing a temporally restricted feeding schedule on these mice shows how the hepatic circadian clock and rhythmic food intake regulate rhythmic transcription in parallel

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact