refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 74 results
Sort by

Filters

Technology

Platform

accession-icon GSE24489
Effect of H11 Kinase/Hsp22 deletion in response to cardiac stress
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon

Description

The expression of the small molecular weight heat shock protein (Hsp) H11 kinase/Hsp22 (Hsp22) is restricted to a limited number of tissues, including the heart and skeletal muscle, both in rodents and in humans. We generated a mouse knockout (KO) model, and investigated the role of Hsp22 in regulating cardiac hypertrophy in response to pressure overload. We compared gene expression profiles between WT and KO mice in basal condition and three days pressure overload after transverse aortic constriction (TAC). These data illustrated a novel mechanism of Hsp22-related gene expression in response to cardiac stress.

Publication Title

H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE10776
Expression profiles of Embryonic stem cells derived from normal fertilization and parthenogenesis
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

To identify the imprinting loci, we designed microarray analysis on the parthenogenetic embryonic stem cells and normal embryos. We could predict 217 imprinting domains associated with embryo development and maternal imprinting.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13231
The effect of inherited polymorphism on prognostic gene expression signatures
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The origins of breast cancer prognostic gene expression profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE112776
Expression data for High and Low permeable brain metastases in 231-BR mouse model
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

All highly and poorly permeable metastases from the same mouse brain were collected by laser capture microdissection. Total RNA from both metastatic lesions and immediate microenvironment was isolated from 5 mice bearing 231-BR metastases. As control 4 healthy mouse brains were included.

Publication Title

Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE28887
Gene expression profile of Age associated B cells, Follicular B cells, and B1 cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

We performed gene expression profile of different B cell populations found in old (18 months old) C57BL/6 female mouse (B1 cells were recovered from both young and old C57BL/6 mice). Mice were nave and healthy (no autoimmunity was detected at the time of the experiment).

Publication Title

Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c⁺ B-cell population is important for the development of autoimmunity.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE15610
Knockout of the selenocysteine tRNA (Trsp) gene in mouse macrophage
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Comparative analysis of gene expression in bone marrow-derived macrophages (BMDM) from trsp knockout mice (Trspfl/fl-LysM-Cre+/-) and Control (Trspfl/fl-LysM-Cre-/-) mice.

Publication Title

Selenoproteins regulate macrophage invasiveness and extracellular matrix-related gene expression.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE74677
Examination of loss of Selenophosphate Synthetase 1 (SPS1) in mouse tissues and cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

To examine the role of SPS1 in mammals, we generated a Sps1 knockout mouse and found that systemic SPS1 deficiency was embryonic lethal. Embryos were clearly underdeveloped by E8.5 and virtually reabsorbed by E14.5. Removal of Sps1 specifically in hepatocytes using Albumin-cre preserved viability, but significantly affected expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione-S-transferase omega 1. To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma cell line, which recapitulated changes in the glutathione system proteins. We further found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 has a role in supporting and/or sustaining cancer. In addition, the increased ROS levels observed in F9 SPS1/GLRX1 deficient cells were reversed and became more like those in F9 SPS1 sufficient cells by overexpressing mouse or human GLRX1. The results suggest that SPS1 is an essential mammalian enzyme with roles in regulating redox homeostasis and controlling cell growth.

Publication Title

Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE16522
Effector cells derived from nave or central memory pmel-1 CD8+ T cells
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

Effector cells for adoptive immunotherapy can be generated by in vitro stimulation of nave or memory subsets of CD8+ T cells. While the characteristics of CD8+ T cell subsets are well defined, the heritable influence of those populations on their effector cell progeny is not well understood. We studied effector cells generated from nave or central memory CD8+ T cells and found that they retained distinct gene expression signatures and developmental programs. Effector cells derived from central memory cells tended to retain their CD62L+ phenotype, but also to acquire KLRG1, an indicator of cellular senescence. In contrast, the effector cell progeny of nave cells displayed reduced terminal differentiation, and, following infusion, they displayed greater expansion, cytokine production, and tumor destruction. These data indicate that effector cells retain a gene expression imprint conferred by their nave or central memory progenitors, and they suggest a strategy for enhancing cancer immunotherapy.

Publication Title

Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31637
Tumor Suppressor BRCA1 epigenetically controls oncogenic miRNA-155
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

BRCA1, a well-known breast and ovarian cancer susceptibility gene with multiple interacting partners, is predicted to have diverse biological functions. However, to date its only well-established role is in the repair of damaged DNA and cell cycle regulation. In this regard, the etiopathological study of low penetrant variants of BRCA1 provides an opportunity to uncover its other physiologically important functions. Using this rationale, we studied the R1699Q variant of BRCA1, a potentially moderate risk variant, and found that it does not impair DNA damage repair but abrogates the repression of miR-155, a bona fide oncomir. We further show that in the absence of functional BRCA1, miR-155 is up-regulated in BRCA1-deficient mouse mammary epithelial cells, human and mouse BRCA1-deficienct breast tumor cell lines as well as tumors. Mechanistically, we found that BRCA1 represses miR-155 expression via its association with HDAC2, which deacetylates H2A and H3 on the miR-155 promoter. Finally, we show that over-expression of miR-155 accelerates whereas the knockdown of miR-155 attenuates the growth of tumor cell lines in vivo. Taken together, our findings demonstrate a new mode of tumor suppression by BRCA1 and reveal miR-155 as a potential therapeutic target for BRCA1-deficient tumors.

Publication Title

Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80005
Gene expression profile in mouse esophageal squamous cell carcinoma
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Human esophageal cancer is the sixth leading cause of cancer death worldwide. More than 90% of esophageal cancer is esophageal squamous cell carcinoma (ESCC). However, the etiological cause of ESCC remains unclear. By using gene expression microarray analysis, we aimed to find whether fungal infection is involved in ESCC development. We identified a wide spectrum of molecular signatures in a fungal infection and ESCC mouse model, including alterations involved in epigenetic regulation, cell cycle control, cell proliferation and survival signaling, and inflammation, which share many similarities with human ESCC.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact