refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 958 results
Sort by

Filters

Technology

Platform

accession-icon GSE17869
Evaluation of Estrogen receptor related gene expression in C57BL/6 vs ERKO-alpha and ERKO-beta mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

These samples are part of the MMRRC study conducted at UAlbany

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE70619
Expression data from foam cells of apolipoprotein E-deficient mice
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

Hypercholesterolemai is a major contributor to atherosclerosis development. To assess the effects of hypercholesterolemia on the transcriptional profiling in foam cells, mice were fed regular chow, or WD for 2 or 14 weeks prior to sacrifice.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE129309
Expression data from WT and KO of Myc in innate lymphoid cell 2 (ILC2) in mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Group-2 innate lymphoid cells (ILC2) serve crucial function in allergy and asthma. Activated ILC2 rapidly proliferate and secret large amounts of type-2 cytokines, such as IL-5 and IL-13. Mechanisms underlying still remain ambiguous. Here we report that Myc is required for ILC2 proliferation and activation in allergic airway inflammation. Inhibition of Myc impair the ILC2 proliferation in vivo and prevented ILC2-mediated airway hyperresponsiveness in vivo.

Publication Title

A critical role for c-Myc in group 2 innate lymphoid cell activation.

Sample Metadata Fields

Genotype, Cell line

View Samples
accession-icon E-GEOD-3303
Transcription profiling by array of adult zebrafish control and post-lesion retina to investigate the molecular determinants of retinal regeneration in adult vertebrate
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Purpose: Investigate the molecular determinants of retinal regeneration in adult vertebrates by analyzing the gene expression profiles of control and post-lesion retina of adult zebrafish, a system that regenerates following injury. Methods: Gene expression profiles of zebrafish retina and brain were determined with DNA microarray, RT-PCR, and real-time quantitative PCR analyses. Damaged retinas and their corresponding controls were analyzed 2-5 days post-lesion (acute injury condition) or 14 d post-lesion (cell regeneration condition). Results: Expected similarities and differences in the gene expression profile of zebrafish retina and brain were observed, confirming the applicability of the gene expression techniques. Mechanical lesion of retina triggered significant, time-dependent changes in retinal gene expression. The induced transcriptional changes were consistent with cellular phenomena known to occur, in a time-dependent manner, subsequent to retinal lesion, including cell cycle progression, axonal regeneration, and regenerative cytogenesis. Conclusions: The results indicate that retinal regeneration in adult zebrafish involves a complex set of induced, targeted changes in gene transcription, and suggest that these molecular changes underlie the ability of the adult vertebrate retina to regenerate. Keywords: time course; injury response; cellular correlation Control brain and retina (unlesioned); Control and lesioned retina (matched animals, at least n = 8 for each condition).

Publication Title

Gene expression profiles of intact and regenerating zebrafish retina.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE19436
Transcriptional alterations in cycling neural stem cells underlying alcohol use disorders
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Ethanol inhibits the proliferation of neural stem cells in the fetal, adolescent, and adult brain. The consequences are cognitive deficits associated with fetal alcohol spectrum disorder and alcohol use disorder. We tested the hypothesis that ethanol affects progression through cell cycle checkpoints by differentially modifying transcriptional processes. Monolayer cultures of NS-5 neural stem cells were treated for 48 hr with the mitogenic agent FGF2 or the anti-mitogenic TGF1 in the absence or presence of ethanol. Cell cycle elongation was induced by a global down-regulation of genes involved in cell cycle progression, including the cyclin E system. Checkpoint regulation occurred downstream of p21 and Jun-oncogene signaling cascades. Thus, ethanol can affect cell cycle progression by altering transcript expression of strategic genes downstream of the G1/S checkpoint.

Publication Title

Ethanol-induced methylation of cell cycle genes in neural stem cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE24281
Unexpected Role for the B cell-specific Src Family Kinase Blk in the Development of IL-17-Producing gamma/delta T Cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

The Ag receptors on alpha/beta and gamma/delta T cells differ not only in the nature of the ligands that they recognize but also in their signaling potential. We hypothesized that the differences in alpha/beta - and gamma/delta TCR signal transduction were due to differences in the intracellular signaling pathways coupled to these two TCRs. To investigate this, we employed transcriptional profiling to identify genes encoding signaling molecules that are differentially expressed in mature alpha/beta and gamma/delta T cell populations. Unexpectedly, we found that B lymphoid kinase (Blk), a Src family kinase expressed primarily in B cells, is expressed in gamma/delta T cells but not in alpha/beta T cells. Analysis of Blk-deficient mice revealed that Blk is required for the development of IL-17-producing gamma/delta T cells. Furthermore, Blk is expressed in lymphoid precursors and, in this capacity, plays a role in regulating thymus cellularity during ontogeny.

Publication Title

Unexpected role for the B cell-specific Src family kinase B lymphoid kinase in the development of IL-17-producing γδ T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8162
Age-related transcriptional changes and the effect of dietary supplementation of vitamin E in the mouse heart and brain
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Anti-inflammatory properties of alpha- and gamma-tocopherol.

Sample Metadata Fields

Sex

View Samples
accession-icon E-GEOD-11893
Transcription profiling of zebrafish embryos reveals AHR Activation by TCDD Downregulates Sox9b expression producing jaw malformation
  • organism-icon Danio rerio
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Exposure to environmental contaminants can disrupt normal development of the early vertebrate skeleton. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) impairs craniofacial skeletal development across many vertebrate species and its effects are especially prominent in early life stages of fish. TCDD activates the aryl hydrocarbon receptor (AHR), a transcription factor that mediates most if not all TCDD responses. We investigated the transcriptional response in the developing zebrafish jaw following TCDD exposure using DNA microarrays. Zebrafish larvae were exposed to TCDD at 96 h postfertilization (hpf) and jaw cartilage tissue was harvested for microarray analysis at 1, 2, 4 and 12 h postexposure (hpe). Numerous chondrogenic transcripts were misregulated by TCDD in the jaw. Comparison of transcripts altered by TCDD in jaw with transcripts altered in embryonic heart showed that the transcriptional responses in the jaw and the heart were strikingly different. Sox9b, a critical chondrogenic transcription factor, was the most significantly reduced transcript in the jaw. We hypothesized that the TCDD reduction of sox9b expression plays an integral role in affecting formation of the embryonic jaw. Morpholino knock down of sox9b expression demonstrated that partial reduction of sox9b expression alone was sufficient to produce a TCDD-like jaw phenotype. Heterozygous sox9b deletion mutant embryos were sensitized to TCDD. Lastly, embryos injected with sox9b mRNA and then exposed to TCDD blocked TCDD-induced jaw toxicity in approximately 14% of sox9b-injected embryos. These results suggest that reduced sox9b expression in TCDD-exposed zebrafish embryos contributes to jaw malformation. Experiment Overall Design: Three independent replicate microarray time course experiments were performed comparing transcript levels between TCDD-exposed and control zebrafish. For each experiment, zebrafish were exposed to TCDD for 1 h starting at 96 hpf as described above. For each time point (97, 98, 100 and 108 hpf) and treatment jaw samples were pooled from 10 dissections for RNA isolation and hybridization with Affymetrix zebrafish arrays (Affymetrix, Santa Clara, CA). Each microarray contains roughly 14,900 probes corresponding to approximately 30% of the zebrafish genome. For each array, total RNA (1 µg) was isolated from 10 jaw microdissections with the QIAGEN RNeasy Mini kit following the manufacturer’s protocol (QIAGEN, Valencia, CA). The One-Cycle Target Labeling and Control Reagents kit was used to synthesize cDNA and biotinylated cRNA following the manufacturer’s protocol (Affymetrix, Santa Clara, CA). Biotin-labeled cRNA (15 µg) was fragmented and hybridized onto Affymetrix Zebrafish Genechip Arrays following the protocol in the Affymetrix Genechip Expression Analysis Technical Manual. Following hybdrization, the arrays were washed and stained with streptavidin-phycoerythrin on an Affymetrix Fluidics Station 400 using the protocol EukGE WS2v4. Arrays were scanned with an Agilent Gene Array Scanner.

Publication Title

No associated publication

Sample Metadata Fields

Subject

View Samples
accession-icon GSE26396
Specific MicroRNAs Are Preferentially Expressed by Skin Stem Cells To Balance Self-Renewal and Early Lineage Commitment
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE18649
Molecular Profiling of the Developing Axial Skeleton: A role for Tgfbr2 in the Development of the Intervertebral Disc.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Molecular profiling of the developing mouse axial skeleton: a role for Tgfbr2 in the development of the intervertebral disc.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact