refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 182 results
Sort by

Filters

Technology

Platform

accession-icon GSE65464
Changes in global gene expression in SIN1 knock-out murine epithelial fibroblasts
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

RNA from wt and SIN1 knock-out MEF cell lines were compared

Publication Title

mTORC2 Responds to Glutamine Catabolite Levels to Modulate the Hexosamine Biosynthesis Enzyme GFAT1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10682
Comparison of parental vs tumor-derived imortalized mouse kidney epithelial cell (iBMK) lines
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Most tumors are epithelial-derived, and although disruption of polarity and aberrant cellular junction formation is a poor prognosticator in human cancer, the role of polarity determinants in oncogenesis is poorly understood. Using in vivo selection, we identified a mammalian orthologue of the Drosophila polarity regulator crumbs as a gene whose loss of expression promotes tumor progression. Immortal baby mouse kidney epithelial (iBMK) cells selected in vivo to acquire tumorigenicity displayed dramatic repression of crumbs3 (crb3) expression associated with disruption of tight junction formation, apicobasal polarity, and contact-inhibited growth. Restoration of crb3 expression restored junctions, polarity and contact inhibition, while suppressing migration and metastasis. These findings suggest a role for mammalian polarity determinants in suppressing tumorigenesis that may be analogous to the well-studied polarity tumor suppressor mechanisms in Drosophila.

Publication Title

Role of the polarity determinant crumbs in suppressing mammalian epithelial tumor progression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE106155
Comparison of mRNA expression between wildtype and Wnt9bcneo/cneo E15.5 urogenital systems.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Wnt9b is expressed in the ureteric bud of the kidney at all stages of development. The Wnt9b cneo allele functions as a partial loss of function. Wnt9bcneo/cneo mutant kidneys initially develop normally but exhaust their nephron progenitor cells by E15.5. Here, we have compared expression between Wnt9bcneo/+ and Wnt9bcneo/cneo kidneys. Additional urogenital tissue (adrenal glands, reproductive tracts and bladder) may have been included in some samples.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106195
Comparison of mRNA expression between wildtype and Wnt9b-/- isolated metanphric mesenchyme from E11.5 kidneys.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Wnt9b is expressed in the ureteric bud of the kidney at all stages of development. In Wnt9b mutants, the ureteric bud forms but the metanephric mesenchyme is never induced to undergo differentiation.

Publication Title

Myc cooperates with β-catenin to drive gene expression in nephron progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18567
Temporal profiling of gene expression in cochleae of wild type and alpha9 null mice
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Efferent inhibition of cochlear outer hair cells is mediated by nicotinic cholinergic receptors containing alpha9 (a9) and alpha10 subunits. Mice lacking a9 nicotinic subunits fail to exhibit classic olivocochlear responses and are characterized by abnormal synaptic morphology at the base of outer hair cells. To detail molecular changes induced upon the loss of a9 subunit, we sampled cochlear RNA from wild type and a9 null mice at postnatal (P) days spanning periods of synapse formation and maturation (P3, P7, P13 and P60). Our findings point to a delay in cochlear maturation starting at the onset of hearing (P13), as well as an up-regulation of various GABA receptor subunits in adult mice lacking the a9 nicotinic subunit.

Publication Title

Lack of nAChR activity depresses cochlear maturation and up-regulates GABA system components: temporal profiling of gene expression in alpha9 null mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17023
Profiling gene expression in 32Dcl3 cells following Xbp1 retrovirus vector transfection
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

The significant changes of hematopoietic cells induced by Xbp1S expression indicate that there is global alteration in gene expression. UPR induces transcription of Xbp1, and phosphorylation of the ER transmembrane kinase IRE1 initiates UPR-mediated mRNA splicing of Xbp1, resulting in the production of Xbp1S, an active form of a basic leucine zipper transcription factor. In the present study, Xbp1S retrovirus vector infected 32cl3 cells show cell cycle arrest and myeloid differentiation. Xbp1S may modulate important genes of differentiation and the cell cycle.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34568
The transcription factor CDX2 maintains active enhancer in intestinal villus cells in vivo
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23436
Histone methylation and transcription factor binding during intestinal cell differentation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Cell differentiation requires epigenetic modulation of tissue-specific genes and activities of master transcriptional regulators, which are recognized for their dominant control over cellular programs. Using novel epigenomic methods, we characterized enhancer elements specifically modified in differentiating intestinal epithelial cells and found enrichment of transcription factor-binding motifs corresponding to CDX2, a master regulator of the intestine. Directed investigation revealed surprising lability in CDX2 occupancy of the genome, with redistribution from hundreds of sites occupied only in progenitors to thousands of new sites in mature cells. Knockout mice confirmed distinct Cdx2 requirements in dividing and differentiated adult intestinal cells, including responsibility for the active enhancer configuration associated with maturity. Dynamic CDX2 occupancy corresponds with condition-specific gene expression and, importantly, to differential co-occupancy with other tissue-restricted transcription factors: HNF4A in mature cells and GATA6 in progenitors. These results reveal dynamic, context-specific functions and mechanisms of a master transcription factor within a cell lineage.

Publication Title

Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE24633
Cdx2 transcription factor binding in intestinal villus and gene expression profiling in Cdx mutant mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

We conditionally inactivated mouse Cdx2, a dominant regulator of intestinal development, and mapped its genome occupancy in adult intestinal villi. Although homeotic transformation, observed in Cdx2-null embryos, was absent in mutant adults, gene expression and cell morphology were vitally compromised. Lethality was accelerated in mice lacking both Cdx2 and its homolog Cdx1, with exaggeration of defects in crypt cell replication and enterocyte differentiation. Cdx2 occupancy correlated with hundreds of transcripts that fell but not with equal numbers that rose with Cdx loss, indicating a predominantly activating role at intestinal cis-regulatory regions. Integrated consideration of a mutant phenotype and cistrome hence reveals the continued and distinct requirement in adults of a master developmental regulator that activates tissue-specific genes.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34567
The transcription factor CDX2 maintains active enhancer in intestinal villus cells in vivo (expression data)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

We established whether partner transcription factor binding, chromatin structure, or gene expression is compromised upon loss of partner factors cdx2 or hnf4a in mouse intestinal villi

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact