refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 946 results
Sort by

Filters

Technology

Platform

accession-icon GSE40661
Gata2 is a master regulator of endometrial function and progesterone signaling
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE40660
Gata2 is a master regulator of endometrial function and progesterone signaling [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

The role of Gata2 in regulating uterine function including fertility, implantation, decidualization and P4 signaling in the mouse was investigated by the conditional ablation of Gata2 in the uterus using the (PR-cre) mouse and ChIP-seq for in vivo GATA2 binding sites in the murine uterus upon acute P4 administration.

Publication Title

A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE57133
ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis [expression]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with Squamous Cell Carcinoma has identified SMAD4 to be frequently mutated. Here we used a novel mouse model to determine the molecular mechanisms regulated by loss of Smad4 which lead to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium developed metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determined that loss of PTEN and SMAD4 resulted in activation of the ELF3 and the ErbB2 pathway due to decreased ERRFI1s expression, a negative regulator of ERBB2 in mice and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuated tumor progression and cell invasion, respectively. Expression profiles analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both prognostic biomarkers and therapeutic drug targets for treating lung cancer.

Publication Title

ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE57642
Expression data from intestinal epithelial cells (IECs)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57641
Expression data from intestinal epithelial cells (IECs) [Mouse430_2 array]
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Polycomb group (PcG) proteins are epigenetic silencers whose dysregulation is frequently linked to cancer via mechanisms that remain unclear. Using conditional knock-out mice in a colitis-associated colorectal cancer (CAC) model, we found that Bmi1 and Mel18 are important initiation and maintenance factors during CAC tumorigenesis. Epithelial depletion of both Bmi1 and Mel18, but not either gene alone, significantly reduces tumor growth and multiplicity.

Publication Title

BMI1 and MEL18 Promote Colitis-Associated Cancer in Mice via REG3B and STAT3.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38375
Interleukin-27 priming of T cells controls Interleukin-17-production in trans via induction of Programmed cell death ligand 1
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Interleukin (IL)-27 is a key immunosuppressive cytokine that counters T helper 17 (Th17) cell-mediated pathology. To identify mechanisms by which IL-27 might exert its immunosuppressive effect, we analyzed genes in T cells rapidly induced by IL-27. We found that IL-27 priming of nave T cells upregulated expression of programmed death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)1-dependent manner. When co-cultured with nave CD4+ T cells, IL-27-primed T cells inhibited the differentiation of Th17 cells in trans through a PD-1-PD-L1 interaction. In vivo, co-administration of nave TCR transgenic T cells (2D2 T cells) with IL-27-primed T cells expressing PD-L1 inhibited the development of Th17 cells and protected from severe autoimmune encephalomyelitis. Thus, these data identify a suppressive activity of IL-27, by which CD4+ T cells can restrict differentiation of Th17 cells in trans.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE21671
Diverse Targets of the Transcription Factor STAT3 Contribute to T Cell Pathogenicity and Homeostasis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

STAT3, an essential transcription factor with pleiotropic functions, plays critical roles in the pathogenesis of autoimmunity. Despite recent data linking STAT3 with inflammatory bowel disease, exactly how it contributes to chronic intestinal inflammation is not known. Using a T cell transfer model of colitis we found that STAT3 expression in T cells was essential for the induction of both colitis and systemic inflammation. STAT3 was critical in modulating the balance of T helper 17 (Th17) and regulatory T (Treg) cells, as well as in promoting CD4+ T cell proliferation. We used chromatin immunoprecipitation and massive parallel sequencing (ChIP-Seq) to define the genome-wide targets of STAT3 in CD4+ T cells. We found that STAT3 bound to multiple genes involved in Th17 cell differentiation, cell activation, proliferation and survival, regulating both expression and epigenetic modifications. Thus, STAT3 orchestrates multiple critical aspects of T cell function in inflammation and homeostasis.

Publication Title

Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21670
Diverse Targets of the Transcription Factor STAT3 Contribute to T Cell Pathogenicity and Homeostasis [Affymetrix Expression]
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

STAT3, an essential transcription factor with pleiotropic functions, plays critical roles in the pathogenesis of autoimmunity. Despite recent data linking STAT3 with inflammatory bowel disease, exactly how it contributes to chronic intestinal inflammation is not known. Using a T cell transfer model of colitis we found that STAT3 expression in T cells was essential for the induction of both colitis and systemic inflammation. STAT3 was critical in modulating the balance of T helper 17 (Th17) and regulatory T (Treg) cells, as well as in promoting CD4+ T cell proliferation. We used chromatin immunoprecipitation and massive parallel sequencing (ChIP-Seq) to define the genome-wide targets of STAT3 in CD4+ T cells. We found that STAT3 bound to multiple genes involved in Th17 cell differentiation, cell activation, proliferation and survival, regulating both expression and epigenetic modifications. Thus, STAT3 orchestrates multiple critical aspects of T cell function in inflammation and homeostasis.

Publication Title

Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37776
Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27708
esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signaling and by regulating Polycomb function
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Signaling by the cytokine LIF and its downstream transcription factor, STAT3, prevents differentiation of pluripotent embryonic stem cells (ESCs) by opposing MAP kinase signaling. This contrasts with most cell types where STAT3 signaling induces differentiation. We find that STAT3 binding across the pluripotent genome is dependent upon Brg, the ATPase subunit of a specialized chromatin remodeling complex (esBAF) found in ESCs. Brg is required to establish chromatin accessibility at STAT3 binding targets, in essence preparing these sites to respond to LIF signaling. Moreover, Brg deletion leads to rapid Polycomb (PcG) binding and H3K27me3-mediated silencing of many Brg-activated targets genome-wide, including the target genes of the LIF signaling pathway. Hence, one crucial role of Brg in ESCs involves its ability to potentiate LIF signaling by opposing PcG. Contrary to expectations, Brg also facilitates PcG function at classical PcG target including all four Hox loci, reinforcing their repression in ESCs. These findings reveal that esBAF does not simply antagonize PcG, but rather, the two chromatin regulators act both antagonistically and synergistically with the common goal of supporting pluripotency.

Publication Title

esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact