refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12 results
Sort by

Filters

Technology

Platform

accession-icon GSE37655
Gene expression alteration by macrophage depletion in IKK mutant mice
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

We generated Ikk-KA/KA knock-in mice (KA/KA), in which an ATP binding site of Ikk Lys 44 was replaced by alanine. The knock-in mice develop severe skin lesions and begin to die after 6 to 10 months. We also found lung SCCs in some of the mice. To study lung SCC development, we stabilize the skin condition by crossing KA/KA with Lori.Ikk transgenic mice to generate KA/KA-Lori.Ikk mice, which 100% spontaneously developed lethal lung SCC at 4 to 6 months of age.

Publication Title

The pivotal role of IKKα in the development of spontaneous lung squamous cell carcinomas.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE17297
Mndal, a new interferon-inducible family member, suppresses cell growth and may modify plasmacytoma susceptibility
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon

Description

Mndal, a new interferon-inducible family member, is highly polymorphic, suppresses cell growth and may modify plasmacytoma susceptibility.

Publication Title

Mndal, a new interferon-inducible family member, is highly polymorphic, suppresses cell growth, and may modify plasmacytoma susceptibility.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE103632
Gene expression profiles of CD4-derived (CAR4) and CD8-derived (CAR8) chimeric antigen receptor T cells after stimulation through the CAR, TCR or both receptors
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Chimeric antigen receptor (CAR)-expressing T-cells induce durable remissions in patients with relapsed/refractory B-cell malignancies. CARs are artificial constructs introduced into mature T-cells conferring a second, non-MHC restricted specificity in addition to the endogenous T-cell receptor (TCR). The impact of TCR activation on CAR T-cell efficacy in vivo has important implications for clinical optimization of CAR T-cell therapy, but cannot be systematically evaluated in xenograft models. Using an immunocompetent, syngeneic murine model of CD19-targeted CAR T-cell therapy for pre-B cell ALL, we demonstrate loss of CD8 CAR T-cell mediated clearance of leukemia associated with T-cell exhaustion and apoptosis when TCR antigen is present. CD4 CAR T-cells demonstrate equivalent cytotoxicity, as compared to CD8 CAR T-cells, and in contrast, retain in vivo efficacy in the presence of TCR stimulation. Gene expression profiles confirm increased exhaustion and apoptosis of CAR8 upon dual receptor stimulation compared to CAR4, and indicate inherent differences in T-cell pathways.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE30834
Influence of C/EBP 3'UTR on RasV12 induced gene expression
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

C/EBPb is an auto-repressed protein that becomes posttranslationally activated by Ras-MEK-ERK signalling. C/EBPb is required for oncogene-induced senescence (OIS) of primary fibroblasts, but also displays pro-oncogenic functions in many tumour cells. Here, we show that C/EBPb activation by H-RasV12 is suppressed in immortalized/transformed cells, but not in primary cells, by its 30 untranslated region (30UTR). 30UTR sequences inhibited Ras-induced cytostatic activity of C/EBPb, DNA binding, transactivation, phosphorylation, and homodimerization, without significantly affecting protein expression. The 30UTR suppressed induction of senescence-associated C/EBPb target genes, while promoting expression of genes linked to cancers and TGFb signalling. An AU-rich element (ARE) and its cognate RNA-binding protein, HuR, were required for 30UTR inhibition. These components also excluded the Cebpb mRNA from a perinuclear cytoplasmic region that contains activated ERK1/2, indicating that the site of C/EBPb translation controls de-repression by Ras signalling. Notably, 30UTR inhibition and Cebpb mRNA compartmentalization were absent in primary fibroblasts, allowing Ras-induced C/EBPb activation and OIS to proceed. Our findings reveal a novel mechanism whereby non-coding mRNA sequences selectively regulate C/EBPb activity and suppress its anti-oncogenic functions.

Publication Title

3'UTR elements inhibit Ras-induced C/EBPβ post-translational activation and senescence in tumour cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE84159
Gene expression from mouse lung tissues
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Comparison of gene expression of lung tissues between WT, IKKa floxed, Kras, and Kras;IKKa floxed mice

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65291
Gene expression alteration by different cell lines derived from lung SCC of IKK mutant mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

In this study, we found that kinase-dead IKK knockin (KAL) mice. develop spontaneous lung squamous cell carcinomas (SCCs) associated with IKK downregulation and marked pulmonary inflammation.KK downregulation dysregulates the expression of multiple oncogenes and tumor suppressors in K5+ lung epithelial cells. The mutant macrophages increase inflammatory responses and oxidative stress to promote DNA damage in IKK-mutant K5+ lung epithelial cells, which further dysregulate the levels of multiple oncogenes, tumor suppressors, and stem cell genes, thereby promoting the IKKlowK5+p63hi cell transition to tumor cells in L-IkkKA/KA lungs. To further investigate the underlying mechanisms by which the lung SCC development, we generated two cell lines, named as S1 and S2 individually, which were derived from KAL lung SCC. The S1 cells express high level of Sca1 and exhibit tumorigenic phenotype, while the S2 cells express low level of Sca1 and exhibit less tumorigenic phenotype. The aim of this microarray assay is to identify differentially expressed genes between S1 and S2 cells, which may highlight the important genes or pathways involved in inflammation-associated lung SCC carcinogenesis.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE85171
Epigenetic Reprogramming of mutant RAS-driven Rhabdomyosarcoma via MEK Inhibition
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE19793
MyD88-mediated signaling prevents development of adenocarcinomas of the colon via interleukin-18
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

Inflammation has pleiotropic effects on carcinogenesis and tumor progression. Signaling through the adaptor protein MyD88 promotes carcinogenesis in several chemically induced cancer models. Interestingly, we observed a protective role for MyD88 in the development of AOM/DSS colitis-associated cancer. The inability of Myd88-/- mice to heal ulcers generated upon injury creates an inflammatory environment that increases the frequency of mutations and results in a dramatic increase in adenoma formation and cancer progression. Susceptibility to colitis development and enhanced polyp formation were also observed in Il18-/- mice upon AOM/DSS treatment, suggesting that the phenotype of MyD88 knockouts is in part due to their inability to signal through the IL-18 receptor. This study revealed a previously unknown level of complexity surrounding MyD88 activities downstream of different receptors that differentially impact tissue homeostasis and carcinogenesis.

Publication Title

MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE85168
Oncogenic RAS blocks myogenic differentiation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

C2C12 mouse myoblasts expressing RAS mutants identified in human tumors fail to differentiate in low serum media.

Publication Title

MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29848
Microarray data of differentiating embryonic stem cells overexpressing the transcription factor Msgn1
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

During mammalian gastrulation, pluripotent epiblast stem cells migrate through the primitive streak to form the multipotent progenitors of the mesoderm and endoderm germ layers. Msgn1 is a bHLH transcription factor and is a direct target gene of the Wnt/bcatenin signaling pathway. Msgn1 is expressed in the mesodermal compartment of the primitive streak and is necessary for the proper development of the mesoderm. Msgn1 mutants show defects in somitogenesis leading to a lack of trunk skeletal muscles, vertebra and ribs.

Publication Title

The Wnt3a/β-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signalling program.

Sample Metadata Fields

Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact