refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12 results
Sort by

Filters

Technology

Platform

accession-icon GSE23556
Mx-Cre mediated deletion of SRF in murine hematopoietic LSK (Lin-Sca1+c-Kit+) cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of hematopoietic LSK(Lin-Sca1+c-Kit+) cells lacking the Serum response factor (SRF) gene. Results provide insight into the role of SRF in regulating genetic programs important for hematopoietic stem cell development

Publication Title

The transcription factor Srf regulates hematopoietic stem cell adhesion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70763
Gene profiling of naive, virus-induced and inflammatory-induced memory CD8 T lymphocytes in homeostatic condition and after stimulation.
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon

Description

Transcriptome analysis comparing naive, protective and non-protective spleen memory CD8 T lymphocytes were conducted to identify key functions associated with memory CD8-mediated immune protection. Memory CD8 T cells generated in response to influenza or vaccinia infection (Flu-memory and VV-memory) were compared to inflammatory memory cells (TIM) that were generated by peptide in inflammatory context. Gene expression analysis was performed on quiescent and re-stimulated CD8 T cells.

Publication Title

Immune signatures of protective spleen memory CD8 T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56236
Glomerular transcriptomic analysis of the influence of Genetic background effect during anti-GBM glomerulonephritis in mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

We analyzed the impact of the genetic background during experimental passive non-accelerated anti-glomerular basement membrane glomerulonephritis (anti-GBM-GN) (an equivalent to nephrotoxic nephritis) in two different mouse genetic backgrounds (C57BL6/J vs 129S2svPAS/crl).

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE36437
Expression data from caudal artery of Notch3WT and Notch3KO mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Notch3 is a transmembrane receptor which is critically important for the structure and myogenic response of distal arteries, particularly cerebral arteries. After activation of the receptor, the intracellular domain translocates in the nucleus to activate target genes transcription.

Publication Title

Transcriptome analysis for Notch3 target genes identifies Grip2 as a novel regulator of myogenic response in the cerebrovasculature.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE32905
EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE32904
EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors [mouse]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

The newly identified claudin-low subtype of cancer is believed to represent the most primitive breast malignancies, having arisen from transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this hypothesis, we show both in vitro and in vivo that transcription factors inducing epithelial-mesenchymal transition can drive the development of claudin-low tumors from differentiated mammary epithelial cells, by playing a dual role in cell transformation and dedifferentiation.

Publication Title

EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE12275
MEF FAN TNF
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

FAN (Factor associated with neutral sphingomyelinase activation) is an adaptor protein that constitutively binds to TNF-R1. Microarray analysis was performed in fibroblasts derived from wild-type or FAN knockout mouse embryos to evaluate the role of FAN in TNF-induced gene expression.

Publication Title

FAN stimulates TNF(alpha)-induced gene expression, leukocyte recruitment, and humoral response.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE12989
Foxl2 functions throughout mouse ovary development
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Foxl2 functions in sex determination and histogenesis throughout mouse ovary development.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE12905
Foxl2 functions in sex determination and histogenesis throughout mouse ovary development, analyzed by Affymetrix arrays
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon

Description

Comparison of Foxl2-null ovaries to wildtype ovaries, ovaries lacking Wnt4 or Kit, or testes, throughout mouse development.

Publication Title

Foxl2 functions in sex determination and histogenesis throughout mouse ovary development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18115
Dendritic cells and stress translation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation that exhibits specific mechanisms to control the immune response. Here we show that in response to polyriboinosinic:polyribocytidylic acid (poly I:C), DCs mount a specific transcription program during which the growth arrest and DNA damage-inducible protein 34 (GADD34/MyD116), a phosphatase 1 (PP1) cofactor, is expressed. Together with its constitutively active counterpart CReP, GADD34 promotes an extensive dephosphorylation of the translation initiation factor eIF2-alfa in activated DCs. In turn, dephosphorylation of eIF2-alfa prevents the translation inhibition normally associated with cellular stress or detection of cytoplasmic double-stranded RNA. These observations have important implications in linking pathogen detection with the integrated stress responses molecular machinery. The importance of this regulation for DC function is exemplified by the alteration of IFN-beta production or the induction of caspase-3 cleavage upon inhibition of PP1 activity.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact