refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE27195
Ciliary neurotrophic factor induces genes associated with inflammatory response and gliosis in the retina: A gene profiling study of flow-sorted, Muller (glial) cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Our data suggest that CNTF remodels the transcription profile of Mller (glial) cells leading to induction of networks associated with transcription, cell cycle regulation and inflammatory response. CNTF also appears to function as an inducer of gliosis in the retina. These studies provide new insights into the biological functions of cytokines in the retina.

Publication Title

Ciliary neurotrophic factor induces genes associated with inflammation and gliosis in the retina: a gene profiling study of flow-sorted, Müller cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE31643
Conditional ablation of the Notch2 receptor in the ocular lens
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Notch signaling is essential for proper lens development, however the specific requirements of individual Notch receptors has not been previously investigated. Here we report the lens phenotypes of Notch2 conditionally mutant mice, which exhibited severe microphthalmia, reduced pupillary openings, disrupted fiber cell morphology, eventual loss of the anterior epithelium, fiber cell dysgenesis, and cataracts. Notch2 mutants also had a persistent lens stalk phenotype at E11.5, and aberrant DNA synthesis in the fiber cell compartment by E14.5. Gene expression analyses showed elevated levels of the cell cycle regulators Cdkn1a (p21Cip1), Ccnd2 (CyclinD2) and Trp63 (p63) that negatively regulates Wnt signaling. Although removal of Notch2 phenocopied the increased proportion of fiber cells of Rbpj and Jag1 conditional mutant lenses, Notch2 is not required for AEL proliferation, suggesting that a different receptor regulates this process. Instead, we found that the Notch2 normally blocks progenitor cell death. Overall, we conclude that Notch2-mediated signaling regulates lens morphogenesis, apoptosis, cell cycle withdrawal, and secondary fiber cell differentiation.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact