refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 123 results
Sort by

Filters

Technology

Platform

accession-icon GSE26502
Smad1 and its target gene Wif1 coordinate BMP and Wnt signaling activities to regulate lung development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Bone morphogenetic protein 4 (BMP4) is essential for lung development. To define its intracellular signaling mechanisms by which BMP4 regulates lung development, BMP-specific Smad1 or Smad5 was selectively knocked out in fetal mouse lung epithelial cells. Abrogation of lung epithelial-specific Smad1, but not Smad5, resulted in retardation of lung branching morphogenesis and reduced sacculation, accompanied by altered distal lung epithelial cell proliferation and differentiation, and consequently severe neonatal respiratory failure. By combining cDNA microarray with ChIP-chip analyses, Wnt inhibitory factor-1 (Wif1) was identified as a novel target gene of Smad1 in the developing mouse lung epithelial cells. Loss of Smad1 transcriptional activation of Wif1 expression was associated with reduced Wif1 expression and increased Wnt/beta-catenin signaling activity in lung epithelia, resulting in specific fetal lung abnormalities. Therefore, a novel regulatory loop of BMP4-Smad1-Wif1-Wnt/beta-catenin in coordinating BMP and Wnt pathways to control fetal lung development is suggested.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16751
Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven acute lymphoblastic leukemia
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Activation-Induced Cytidine Deaminase (AID) is required for somatic hypermutation and immunoglobulin (Ig) class switch recombination in germinal center B lymphocytes. Occasionally, AID targets non-Ig genes, thereby contributing to B cell lymphomagenesis. We recently reported aberrant expression of AID in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). To elucidate the biological significance of aberrant AID expression, we studied loss of AID function in a murine model of BCR-ABL1 ALL. Mice transplanted with BCR-ABL1-transduced AID-/- bone marrow had prolonged survival as compared to mice transplanted with leukemia cells generated from AID+/+ bone marrow. Consistent with a causative role of AID in genetic instability, AID-/- leukemia had a decreased frequency of amplifications, deletions and a lower frequency of mutations in non-Ig genes including Pax5 and Rhoh as compared to AID+/+ leukemias. AID-/- and AID+/+ ALL cells showed a markedly distinct gene expression pattern as determined by principle component analysis, with 2,365 genes differentially expressed. In contrast to AID+/+ leukemia, AID-/- ALL cells failed to downregulate a number of tumor suppressor genes such as Rhoh, Cdkn1a (p21), and Blnk (SLP65). We conclude that AID accelerates clonal evolution in BCR-ABL1 ALL by enhancing genetic instability, aberrant somatic hypermutation, and by transcriptional inactivation of tumor suppressor genes.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34839
Pten loss and RAS/MAPK activation cooperate to promote EMT and prostate cancer metastasis initiated from stem/progenitor cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

PTEN loss or PI3K/AKT signaling pathway activation correlates with human prostate cancer progression and metastasis. However, in preclinical murine models, deletion of Pten alone fails to mimic the significant metastatic burden that frequently accompanies the end stage of human disease. To identify additional pathway alterations that cooperate with PTEN loss in prostate cancer progression, we surveyed human prostate cancer tissue microarrays and found that the RAS/MAPK pathway is significantly elevated both in primary and metastatic lesions. In an attempt to model this event, we crossed conditional activatable K-rasG12D/WT mice with the prostate conditional Pten deletion model we previously generated. Although RAS activation alone cannot initiate prostate cancer development, it significantly accelerated progression caused by PTEN loss, accompanied by epithelial-to-mesenchymal transition (EMT) and macrometastasis with 100% penitence. A novel stem/progenitor subpopulation with mesenchymal characteristics was isolated from the compound mutant prostates, which was highly metastatic upon orthotopic transplantation. Importantly, inhibition of RAS/MAPK signaling by PD325901, a MEK inhibitor, significantly reduced the metastatic progression initiated from transplanted stem/progenitor cells. Collectively, these data indicate that activation of RAS/MAPK signaling serves as a potentiating second hit to alteration of the PTEN/PI3K/AKT axis and co-targeting both pathways is highly effective in preventing the development of metastatic prostate cancers.

Publication Title

Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12748
Weighted Gene Coexpression Network Analysis Identifies Biomarkers in Glycerol Kinase Deficient Mice
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Symptomatic glycerol kinase deficiency (GKD) is associated with episodic metabolic and central nervous system deterioration. We report here the first application of Weighted Gene Co-Expression Network Analysis (WGCNA) to investigate a knockout (KO) murine model of a human genetic disease. WGCNA identified networks and key hub transcripts from liver mRNA of glycerol kinase (Gyk) KO and wild type (WT) mice. Day of life 1 (dol1) samples from KO mice contained a network module enriched for organic acid metabolism before Gyk KO mice develop organic acidemia and die on dol3-4 and the module containing Gyk was enriched with apoptotic genes. Roles for the highly connected Acot, Psat and Plk3 transcripts were confirmed in cell cultures and subsequently validated by causality testing. We provide evidence that GK may have an apoptotic moonlighting role that is lost in GKD. This systems biology strategy has improved our understanding of GKD pathogenesis and suggests possible treatments.

Publication Title

Weighted gene co-expression network analysis identifies biomarkers in glycerol kinase deficient mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE101165
Expression data of wildtype and miR-146a-deficient 2D2 transgenic T cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We used the Affymetrix GeneChip Mouse Genome 430 2.0 Arrays to compare the gene expression profiles of wildtype and miR-146a-deficient 2D2 transgenic T cells.

Publication Title

miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14416
ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Interferon is effective at inducing complete remissions in patients with Chronic Myelogenous Leukemia (CML), and evidence supports an immune mechanism. Here we show that the Type I Interferons (alpha and beta) regulate expression of the Interferon consensus sequence binding protein (ICSBP) in bcr-abl transformed cells and as shown previously for ICSBP, induce a vaccine-like immunoprotective effect in a murine model of bcr-abl induced leukemia. We identify the chemokines CCL6 and CCL9 as genes prominently induced by the Type I Interferons and ICSBP, and demonstrate that these immunomodulators are required for the immunoprotective effect of ICSBP expression. Insights into the role of these chemokines in the anti-leukemic response of interferons suggest new strategies for immunotherapy of CML.

Publication Title

ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16655
Developmental stage-specific interplay between GATA1 and IGF signaling in fetal hematopoiesis and leukemogenesis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis.

Sample Metadata Fields

Specimen part, Disease, Cell line, Treatment

View Samples
accession-icon GSE8715
Transcriptional Profiling of the Megabladder Mouse - A Unique Model of Bladder Dysmorphogenesis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Recent studies in our lab have identified a mutant mouse model of obstructive nephropathy designated mgb for megabladder. Homozygotic mgb mice (mgb-/-) develop lower urinary tract obstruction in utero due to a lack of bladder smooth muscle differentiation. This defect is the result of a random transgene insertion into chromosome 16 followed by a translocation of this fragment into chromosome 11. In an effort to identify potential gene targets affected in mgb mice, we performed transcriptional profiling on embryonic day 15 (E15) mgb-/- bladders using both a Chromosome 11/16 Custom GeneChip Array and the Affymetrix Mouse Genome 430 2.0 GeneChip. This analysis identified no definitive mis-expressed gene targets on chromosome 11. In contrast, mgb-/- mice significantly over-expressed a cluster of gene products located on the translocated fragment of chromosome 16 including urotensin II-related peptide (Urp), which was shown to be preferentially over-expressed in developing mgb-/- bladders. Immunohistochemical studies indicated that the spatial distribution of Urp was altered in mgb-/- bladders, while biochemical studies suggested a potential role for Urp in modifying smooth muscle cell phenotype in vitro. Pathway analysis of mgb microarray data showed dysregulation of at least 60 gene products associated with the differentiation of smooth muscle. In conclusion, the results of this study indicate that the molecular pathways controlling normal smooth muscle development are severely altered in mgb-/- bladders, and provide the first evidence that Urp may play a critical role in bladder smooth muscle development.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11859
Acquisition of granule neuron precursor identity and Hedgehog-induced medulloblastoma in mice.
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon

Description

Origins of the brain tumor, medulloblastoma, from stem cells or restricted pro-genitor cells are unclear. To investigate this, we activated oncogenic Hedgehog signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipo-tent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ rhombic lip progenitors. Hedgehog activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hedgehog signaling promotes medulloblastoma from lineage-restricted granule cell progenitors.

Publication Title

Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13874
microRNA-1 negatively regulates expression of the hypertrophy-associated genes calmodulin and Mef2a
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

Calcium signaling is a central regulator of cardiomyocyte growth and function. Calmodulin is a critical mediator of calcium signals. Because the amount of calmodulin within cardiomyocytes is limiting, precise regulation of calmodulin expression may be an important for regulation of calcium signaling. In this study, we show for the first time that calmodulin levels are regulated post-transcriptionally in heart failure. The cardiomyocyte-restricted microRNA miR-1 inhibited translation of calmodulin-encoding mRNAs via highly conserved target sites within their 3-untranslated regions. In keeping with its effect on calmodulin expression, miR-1 downregulated calcium-calmodulin signaling through the calcineurin to NFAT. miR-1 also negatively regulated expression of Mef2a and Gata4, key transcription factors that mediate calcium-dependent changes in gene expression. Consistent with downregulation of these hypertrophy-associated genes, miR-1 attenuated cardiomyocyte hypertrophy in cultured neonatal rat cardiomyocytes and in the intact adult heart. Our data indicate that miR-1 regulates cardiomyocyte growth responses by negatively regulating the calcium-signaling components calmodulin, Mef2a, and Gata4.

Publication Title

No associated publication

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact