refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1219 results
Sort by

Filters

Technology

Platform

accession-icon GSE3621
R6/1 brain hemisphere time series gene expression
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

HD R6/1 transgenic mouse line brain hemispheres dissected. RNA targets were created for transgenics and wildtypes at time points 18, 22 and 27 weeks. Profiles and data analysis performed using the Bioconductor software and linear model contrasts using LIMMA on RMA probeset summarys.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28621
Transcriptional profiles of macrophages in resolving inflammation
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

We have performed a comprehensive transcriptional analysis of specific monocyte and macrophage (M) subsets during an acute self-resolving inflammatory insult. Following initial induction of acute inflammation, tissue resident (Resident) M are rapidly cleared from the inflammatory foci, only becoming recoverable as inflammation resolves. Monocytes are recruited to the inflammatory lesion where they differentiate into M. We term these monocyte-derived M inflammation-associated to distinguish them from Resident M which are present throughout the inflammatory response and can renew during the resolution of inflammation by proliferation. Comparative analysis of the Mo and M populations (both inflammation-associated and Resident M) identifies select genes expressed in subsets of inflammation-associated and Resident M that play important roles in the resolution of inflammation and/or for immunity, including molecules involved in antigen presentation, cell cycle and others associated with immaturity and M activation.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE70262
The impact of P53 loss on transcriptome changes following loss of Apc in the intestine
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

BACKGROUND: p53 is an important tumor suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of intestinal neoplasia has not been demonstrated.

Publication Title

A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65476
B-catenin deficiency, but not c-Myc deletion, suppresses the immediate phenotypes of Apc loss in the liver
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Dysregulated Wnt signalling is seen in approximately 30% of hepatocellular cancers, thus finding pathways downstream of activation of Wnt signalling is key. Using cre lox technology we have deleted the the adenomatous polyposis coli tumour suppressor protein (Apc) within the adult mouse liver and observed a rapid increase in nuclear beta-catenin and C-Myc. This is associated with an induction of proliferation leading to hepatomegally within 4 days of gene deletion. To investigate the downstream pathways responsible for these phenotypes we analysed the impact of inactivating Apc in the context of deficiency of the potentially key effectors beta-catenin and c-Myc. beta-catenin loss rescues both the proliferation and hepatomegally phenotypes following Apc loss. However c-Myc deletion, which rescues the phenotypes of Apc loss in the intestine, had no effect on the phenotypes of Apc loss. The consequences of deregulation the Wnt pathway within the liver are therefore strikingly different to those observed within the intestine, with the vast majority of Wnt targets beta-catenin dependent but c-Myc independent in the liver.

Publication Title

B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14929
Myocardial expression data from gnotobiotic wild-type and Ppara-/- mice
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon

Description

Germ free (GF) and conventionalized (CONV-D) wild-type C57Bl/6 male mice in the CARB-fed, 24h fasted, and 30d trained states; plus GF and CONV-D CARB-fed Ppara-/- mice. CARB-fed indicates a standard polysaccharide-rich mouse chow diet.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE64750
Lung expression data from highly pathogenic H5N1 virus infected and uninfected mice
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Susceptible and Resistant mouse strain, e.g. DBA/2J and C57BL/6J respectively, were inoculated with a highly pathogenic H5N1 influenza A virus (A/Hong Kong/213/2003) for 72 hours.

Publication Title

Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE43716
Microarray to find CHOP/ATF5 dependent genes in response to proteasome inhibition
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE54581
Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKalpha
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

Disruption of protein folding in the endoplasmic reticulum triggers the Unfolded Protein Response (UPR), a transcriptional and translational control network designed to restore protein homeostasis. Central to the UPR is PERK phosphorylation of the alpha subunit of eIF2 (eIF2~P), which represses global translation coincident with preferential translation of mRNAs, such as ATF4 and CHOP, that serve to implement the UPR transcriptional regulation. In this study, we used sucrose gradient ultracentrifugation and a genome-wide microarray approach to measure changes in mRNA translation during ER stress. Our analysis suggests that translational efficiencies vary across a broad range during ER stress, with the majority of transcripts being either repressed or resistant to eIF2~P, while a notable cohort of key regulators are subject to preferential translation. From this latter group, we identify IBTKa as being subject to both translation and transcriptional induction during eIF2~P in both cell lines and a mouse model of ER stress. Translational regulation of IBTKalpha mRNA involves the stress-induced relief of two inhibitory uORFs in the 5'-leader of the transcript. Depletion of IBTKalpha by shRNA reduced viability of cultured cells coincident with increased caspase 3/7 cleavage, suggesting that IBTKalpha is a key regulator in determining cell fate during the UPR.

Publication Title

Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKα.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10964
Virus-Induced Airway Disease in Mice (C57BL/6J, d21/d49)
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of gene expression in lungs of C57BL/6J mice that develop chronic airway disease phenotypes after a single Sendai virus infection, compared with mice treated with UV-inactivated virus.

Publication Title

Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

Sample Metadata Fields

Sex, Time

View Samples
accession-icon GSE43713
Microarray to find CHOP dependent genes in response to proteasome inhibition
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the Integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switch to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study was to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP induces the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly activated by both CHOP and ATF4. Knock-down of ATF5 increased cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have pro-apoptotic functions. Transcriptome analyses of ATF5-dependent genes revealed targets involved in apoptosis, including, NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feed-forward loop of stress induced transcriptional regulators, each subject to transcriptional and translational control that can switch cell fate towards apoptosis.

Publication Title

CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact