refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE15541
Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Ccl3
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

OBJECTIVE: MEIS1, a HOX cofactor, collaborates with multiple HOX and NUP98-HOX fusion proteins to accelerate the onset of acute myeloid leukemia (AML) through largely unknown molecular mechanisms. MATERIALS AND METHODS: To further resolve these mechanisms, we conducted a structure-function analysis of MEIS1 and gene-expression profiling, in the context of NUP98-HOXD13 (ND13) leukemogenesis. RESULTS: We show, in a murine bone marrow transplantation model, that the PBX-interaction domain, the homeodomain, and the C-terminal domain of MEIS1, are all required for leukemogenic collaboration with ND13. In contrast, the N-terminal domain of MEIS1 is dispensable for collaboration with ND13, but is required for Flt3 upregulation, indicating additional roles for MEIS1 in induction of leukemia independent of alterations in Flt3 expression. Gene-expression profiling of a cloned ND13 preleukemic cell line transduced with wild-type or Meis1 mutant forms revealed deregulation of multiple genes, including a set not previously implicated as MEIS1 targets. Chromatin immunoprecipitation revealed the in vivo occupancy of MEIS1 on regulatory sequences of Trib2, Flt3, Dlk1, Ccl3, Ccl4, Pf4, and Rgs1. Furthermore, engineered overexpression of Trib2 complements ND13 to induce AML while Ccl3 potentiates the repopulating ability of ND13. CONCLUSION: This study shows that Meis1-induced leukemogenesis with ND13 can occur in the absence of Flt3 upregulation and reveals the existence of other pathways activated by MEIS1 to promote leukemia.

Publication Title

Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Ccl3.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46990
Gene expression changes induced by expression of MN1 deletion mutants in murine bone marrow cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML) and T-lymphoblastic leukemia, share the same pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of the malignant disease. We studied the relationship of different protein domains of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal domain of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal domain resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the most N-terminal domain. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active domains. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.

Publication Title

Cell fate decisions in malignant hematopoiesis: leukemia phenotype is determined by distinct functional domains of the MN1 oncogene.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13490
Cancer Stem Cells Are Enriched In The Side-Population Cells In A Mouse Model Of Glioma
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

The recent identification of cancer stem cells (CSCs) in multiple human cancers provides a new inroad to understanding tumorigenesis at the cellular level. CSCs are defined by their characteristics of self-renewal, multipotentiality, and tumor initiation upon transplantation. By testing for these defining characteristics, we provide evidence for the existence of CSCs in a transgenic mouse model of glioma, S100-verbB;Trp53. In this glioma model, CSCs are enriched in the side-population (SP) cells. These SP cells have enhanced tumor-initiating capacity, self-renewal, and multipotentiality compared to non-SP cells from the same tumors. Furthermore, gene expression analysis comparing FACS-sorted cancer SP cells to non-SP cancer cells and normal neural SP cells identified 45 candidate genes that are differentially expressed in glioma stem cells. We validated the expression of two genes from this list (S100a4 and S100a6) in primary mouse gliomas and human glioma samples. Analyses of xenografted human GBM (glioblatoma multiforme) cell lines and primary human glioma tissues show that S100A4 and S100A6 are expressed in a small subset of cancer cells and that their abundance is positively correlated to tumor grade. In conclusion, this study shows that CSCs exist in a mouse glioma model, suggesting that this model can be used to study the molecular and cellular characteristics of CSCs in vivo and to further test the cancer stem cell hypothesis.

Publication Title

Cancer stem cells are enriched in the side population cells in a mouse model of glioma.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact