refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 60 results
Sort by

Filters

Technology

Platform

accession-icon GSE106271
Treatment of insulin resistant 3T3-L1 adipose cells with MnTBAP
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

MnTBAP reversed insulin resistance without significant alteration to gene expression

Publication Title

The transcriptional response to oxidative stress is part of, but not sufficient for, insulin resistance in adipocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15736
Expression data from Smad4-siRNA bEnd3 cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

TGF-beta/Smads signaling plays important roles in vascular integrity. To identify potential Smad4 target genes in brain endothelial cells that control cerebrovascular integrity, the microarray assay was performed to compare the gene expression profiles of bEnd3 transfected with Smad4-siRNA and control-siRNA.

Publication Title

Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE15267
Expression data of induced pluripotent stem cell
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

We present a robust serum-free system for the rapid and efficient reprogramming of mouse somatic cells by Oct4, Sox2 and Klf4. The elimination of fetal bovine serum and oncogene c-Myc allowed reprogramming cells to be detected as early as Day 2 and reached greater than 10% of the population at Day 7 post retroviral transduction. The resulting iPS colonies were isolated with high efficiency to establish pluripotent cell lines. Based on this method, we further developed iPS-SF1 as a dedicated reprogramming medium for chemical screening and mechanistic investigations.

Publication Title

Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP040018
A zebrafish model for hyperinsulinemia shows that induction of insulin resistance and immune suppression is mediated by ptpn6/shp.1
  • organism-icon Danio rerio
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Type 2 Diabetes, obesity and metabolic syndrome are pathologies impacting a large population worldwide where insulin resistance plays a central role. These pathologies are usually associated to a dysregulation of insulin secretion leading to a chronic exposure of the tissues to high insulin levels (i.e. hyperinsulinemia) what diminishes the concentration of key downstream elements causing insulin resistance. The complexity of the study of insulin resistance relies on the heterogeneity of the metabolic states where it’s observed. In consequence, animal models for the study of insulin resistance, can not completely recapitulate the metabolic status of insulin resistant humans, what is translated in contradictory observations. To contribute to the understanding of the mechanisms triggering insulin resistance we have developed a zebrafish model to study insulin metabolism and its associated disorders. Zebrafish embryos appeared to be sensitive to human recombinant insulin, becoming insulin resistant when exposed to a high dose of the hormone, as confirmed by glucose measurements. Moreover RNAseq-based transcriptomic profiling of these embryos revealed a strong down regulation of a number of immune relevant genes as a consequences of the exposure to hyperinsulinemia. Interestingly, as an exception, the negative immune modulator ptpn6 appeared to be up regulated in insulin resistant embryos. Knockdown of ptpn6 showed to counteract the observed down regulation of the immune system and insulin signalling pathways effects at the transcriptional level caused by hyperinsulinemia. These results show that ptpn6 is a mediator of the metabolic switch between insulin sensitive and insulin resistant states. Our zebrafish model for hyperinsulinemia has therefore demonstrated it suitability to discover novel regulators of insulin resistance. In addition, our data will be very useful to further study the function of immunological determinants in a non-obese model system. Overall design: 16 samples in total were analyzed. 4 replicates from control samples (injected with PBS) and 4 replicates of insulin injected samples at 0.5 hpi and 4 hpi. In each sample 10 embryos were pooled.

Publication Title

Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21448
Renal gene expression in uninephrectomized diabetic OVE26 mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

OVE26 (OVE) mice provide a useful model of advanced diabetic nephropathy (DN) with respect to albuminuria and pathologies. We showed that albuminuria, reduced GFR and interstitial fibrosis, which normally take 8-9 months to develop, are more advanced in uninephrectomized OVE mice within 10 weeks of surgery, at 4.5 months of age. The accelerated progression of renal damage, especially renal fibrosis in OVE-uni mice, was also identified at the gene expression level. The hepatic fibrosis/hepatic stellate cell activation pathway was by far the most significant Ingenuity canonical pathway identified by gene array in OVE-uni mice. Many inflammatory- and immune-related pathways were found among the top pathways up-regulated in OVE-uni kidneys, including acute-phase response signaling, leukocyte extravasation, IL6, IL10, IL12 signaling, TREM1 signaling, dendritic cell maturation and the complement system. These pathways were also dramatically up-regulated in 8-month-old OVE mice (GSE20636). Nephrectomized OVE mice are a much faster alternative model for studying advanced renal disease in diabetes.

Publication Title

Uninephrectomy of diabetic OVE26 mice greatly accelerates albuminuria, fibrosis, inflammatory cell infiltration and changes in gene expression.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE32529
Mouse ischemic tolerance genomic analysis of the brain and blood.
  • organism-icon Mus musculus
  • sample-icon 218 Downloadable Samples
  • Technology Badge Icon

Description

Ischemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand, lipopolysaccharide (LPS) or the TLR9 ligand, unmethylated CpG ODNs prior to transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain and blood genomic profiles in response to preconditioning with these TLR ligands and to preconditioning via exposure to brief ischemia.

Publication Title

Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE3126
Comparison of HNF4 null mouse embryonic livers with control mouse embryonic livers
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

To study the role of hepatic nuclear factor alpha (HNF4a in hepatogenesis, we used loxP-Cre technology to eliminate it from developing mouse livers.

Publication Title

Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67391
Expression data from testis of two-month-old WT and Ccnyl1 KO mice
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Ccnyl1 is a newly identified genes, but the founction of which remained unclear, here we used the Ccnyl1 knockout mice to finding clues for its functional roles

Publication Title

CCNYL1, but Not CCNY, Cooperates with CDK16 to Regulate Spermatogenesis in Mouse.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24705
mRNA expression data from iPSCs, ntESCs and iPSC-nt-ESCs
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon

Description

We generated three kinds of genetically identical mouse reprogrammed cells: induced pluripotent stem cells (iPSCs), nuclear transfer embryonic stem cells (ntESCs) and iPSC-nt-ESCs that are established after successively reprogramming of iPSCs by nuclear transfer (NT). NtESCs show better developmental potential than iPSCs, whereas iPSC-nt-ESCs display worse developmental potential than iPSCs.

Publication Title

Different developmental potential of pluripotent stem cells generated by different reprogramming strategies.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE70393
Gene expression in CD8+ T cells derived from Nrdp1+/+ and Nrdp1-/- mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The purpose of this study was to determine which genes are differentially regulated by the E3 ligase Nrdp1 in CD8+ T cells after treatments with anti-CD3/CD28 Abs. The results demonstrate increased induction of cytotoxicity-associated genes in Nrdp1-/- mice than in Nrdp1+/+ mice after activation. Thus Nrdp1 may be involved in the regulation of TCR signaling.

Publication Title

K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8(+) T cell activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact