refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE48600
Microarray expression analysis of wild type and Erg knockdown bone marrow hematopoietic stem and progenitor cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Erg is an ETS family transcription factor frequently overexpressed in human leukemias and has been implicated as a key regulator of hematopoietic stem cells (HSCs). However how Erg controls normal hematopoiesis, particularly at the stem cell level, remains poorly understood. Using homologous recombination, we generated an Erg knockdown allele (Ergkd) in which Erg expression can be restored upon Cre-mediated excision of a Stopper cassette. In Ergkd/+ mice, ~40% reduction in Erg dosage perturbed both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin-Sca-1+c-Kit+ (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors.

Publication Title

Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19518
Microarray analysis of CA-AhR transgenic mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We have generated transgenic mice expressing constitutively activated aryl hydrocarbon receptor (CA-AhR) to examine the biological consequences of AhR activation..

Publication Title

A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34963
The Polycomb Repressive Complex 2 Is Required For MLL-AF9 Leukemia
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Polycomb repressive complex 2 is required for MLL-AF9 leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE83326
Hepatic gene expression data from cadmium-exposed mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Environmental cadmium, with a high average dietary intake, is a severe public health risk. However, the long-term health implications of environmental exposure to cadmium in different life stages remain unclear.

Publication Title

Sex-Dependent Effects of Cadmium Exposure in Early Life on Gut Microbiota and Fat Accumulation in Mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE34959
Expression profiling of primary wild type (WT), Ezh2-null and Eed-null murine MLL-AF9 AML
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

We evaluated gene expression changes in murine leukemia caused by retroviral overexpression of MLL-AF9. We compared wild-type (WT) leukemia cells with mutant leukemia cells after cre-mediated inactivation of homozygous conditional alleles for Ezh2 or Eed, both of which are components of the Polycomb Repressive Complex2.

Publication Title

Polycomb repressive complex 2 is required for MLL-AF9 leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE34961
Expression profiling of secondary wild type (WT) and Ezh2-null murine MLL-AF9 AML
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

We evaluated gene expression changes in secondary recipient murine leukemia caused by retroviral overexpression of MLL-AF9. We compared wild-type (WT) leukemia cells with mutant leukemia cells after cre-mediated inactivation of a homozygous conditional allele for Ezh2, a component of the Polycomb Repressive Complex2.

Publication Title

Polycomb repressive complex 2 is required for MLL-AF9 leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE68427
Identification and function of Tbx4 resident fibroblasts as a major source of fibrotic fibroblasts
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Progressive tissue fibrosis is a major cause of morbidity, and idiopathic pulmonary fibrosis (IPF) is a terminal illness characterized by unremitting matrix deposition in the lung with very limited choice of therapies. The imcomplete understanding of the mechanisms of progressive fibrosis curbs the progress in therapeutics development. Of which, the origin of fibrotic fibroblasts has been poorly defined during the pathogenesis of tissue fibrosis. Here, we fate-mapped a early embryonic transcription factor T-box gene 4 (Tbx4)-derived mesenchymal progenitors in injured adult lung and found that Tbx4+ lineage cells are the major source of myofibroblasts. The ablation of Tbx4+ cells or disruption of Tbx4 signaling attenuated lung fibrosis in bleomycin injury model in mice in vivo. Furthermore, Tbx4+ fibroblasts are more invasive and the regulation of fibroblast invasiveness by Tbx4 is through mediating hyaluronan synthase 2 (HAS2). This study identified a major mesenchymal transcription factor driving the development of fibrotic fibroblasts during lung fibrosis. Understanding the origin, signaling, and functions of these fibroblasts would prove pivotal in the development of therapeutics for patients with progressive fibrotic diseases.

Publication Title

Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33660
Direct Recruitment of Polycomb Repressive Complex 1 (PRC1) to Chromatin by Core Binding Transcription Factors
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact