refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 17 results
Sort by

Filters

Technology

Platform

accession-icon GSE35181
beta-Arrestin Pathway-Selective G Protein-Coupled Receptor Agonists Engender Unique Biological Efficacy In Vivo
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Biased GPCR agonists are orthosteric ligands that possess pathway-selective efficacy, activating or inhibiting only a subset of the signaling repertoire of their cognate receptors. In vitro, D-Trp12,Tyr34-bPTH(7-34) (PTH-{beta}arr), a biased agonist for the type 1 parathyroid hormone receptor, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, both PTH-{beta}arr and the conventional agonist PTH(1-34) stimulate anabolic bone formation. To understand how two PTH1R ligands with markedly different in vitro efficacy could elicit similar in vivo responses, we analyzed transcriptional profiles from calvarial bone of mice treated for 8 weeks with vehicle, PTH-{beta}arr or PTH(1-34). Treatment of wild type mice with PTH-{beta}arr primarily affected pathways that promote expansion of the osteoblast pool, notably cell cycle regulation, cell survival and migration. These responses were absent in beta-arrestin2 null mice, identifying them as downstream targets of beta-arrestin2-mediated signaling. In contrast, PTH(1-34) primarily affected pathways classically associated with enhanced bone formation, including collagen synthesis and matrix mineralization. PTH(1-34) actions were less dependent on beta-arrestin2, as might be expected of a ligand capable of G protein activation. These results illustrate the uniqueness of biased agonism in vivo and demonstrate that functional selectivity can be exploited to change the quality of GPCR efficacy.

Publication Title

β-arrestin-selective G protein-coupled receptor agonists engender unique biological efficacy in vivo.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE13044
Gene expression profiling in the lung and liver of low and high dose Perfluorooctanoic Acid exposed mouse fetuses
  • organism-icon Mus musculus
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon

Description

Exposure to PFOA during gestation altered the expression of genes related to fatty acid catabolism in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with activation of PPAR alpha. Non-PPAR alpha related changes were suggested as well.

Publication Title

Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13302
Gene expression profiling in the lung and liver of Perfluorooctane sulfonate (PFOS) exposed mouse fetuses
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon

Description

Most of the transcriptional changes induced by PFOS in the fetal mouse liver and lung were related to activation of PPARalpha. When compared to the transcript profiles induced by PFOA (Pubmed ID 17681415), few remarkable differences were found other than up-regulation of Cyp3a genes. Because PFOS and PFOA have been shown to differ in their mode of action in the murine neonate, these data suggest that changes related to PFOS-induced neonatal toxicity may not be evident in the fetal transcriptome at term.

Publication Title

Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10118
Maternal versus paternal uniparental disomy of Chr12 and Chr18: whole embryo and placenta
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

WAMIDEX: a web atlas of murine genomic imprinting and differential expression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE10085
Expression data from UPD18 mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Comparison of gene expression levels between matUPD18 and patUPD18 8.5 dpc whole embryo samples (maternal versus paternal uniparental disomy of Chr 18). Identification of highly differentially expressed transcripts.

Publication Title

WAMIDEX: a web atlas of murine genomic imprinting and differential expression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE39304
Double-stranded RNA induces molecular and inflammatory signatures that are directly relevant to COPD
  • organism-icon Mus musculus
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon

Description

Polyinosinic:polycytidylic acid (poly I:C) is a synthetic analogue of double-stranded (ds)RNA, a molecular pattern associated with viral infections, that is used to exacerbate inflammation in lung injury models. Despite its frequent use, there are no detailed studies of the responses elicited by a single topical administration of poly I:C to the lungs of mice. Our data provides the first demonstration that the molecular responses in the airways induced by poly I:C correlate to those observed in the lungs of COPD patients. These expression data also revealed three distinct phases of response to poly I:C, consistent with the changing inflammatory cell infiltrate in the airways. Poly I:C induced increased numbers of neutrophils and NK cells in the airways, which were blocked by CXCR2 and CCR5 antagonists, respectively. Using gene set variation analysis on representative data sets, gene sets defined by poly I:C-induced DEGs were enriched in the molecular profiles of chronic obstructive pulmonary disease (COPD), but not idiopathic pulmonary fibrosis patients. Collectively, these data represent a new approach for validating the clinical relevance of preclinical animal models and demonstrate that a dual CXCR2/CCR5 antagonist may be an effective treatment for COPD patients.

Publication Title

Double-stranded RNA induces molecular and inflammatory signatures that are directly relevant to COPD.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE40151
Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: A model for active disease.
  • organism-icon Mus musculus
  • sample-icon 111 Downloadable Samples
  • Technology Badge Icon

Description

Genomic profiling of bleomycin- and saline-treated mice across 7 timepoints (1, 2, 7, 14, 21, 28, 35 days post treatment) was carried out in C57BL6/J mice to determine the phases of response to bleomycin treatment which correspond to onset of active pulmonary fibrosis.

Publication Title

Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE7487
Gene profiling of pathological cardiac hypertrophy vs physiological hypertrophy
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon

Description

Cardiac hypertrophy can lead to heart failure, and is induced either by physiological stimuli eg postnatal development, chronic exercise training or pathological stimuli eg pressure or volume overload. Majority of new therapies for heart failure has mixed outcomes. A combined mouse model and oligo-array approach are used to examine whether phosphoinositide 3-kinase (p110-alpha isoform) activity is critical for maintenance of cardiac function and long-term survival in a setting of heart failure. The significance and expected outcome are to recognise genes involved in models of heart failure ie pathological- vs physiology-hypertrophy, and examine the molecular mechanisms responsible for such activity.

Publication Title

PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41789
Senescence gene signature of radiation fibrosis
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon

Description

Radiation lung injury is characterized by early inflammation and late fibrosis. The causes underlying the chronic, progressive nature of radiation injury are poorly understood. Here, we report that the gene expression of irradiated lung tissue correlates with that observed in the lungs in aged animals. We demonstrate that NOX4 expression and superoxide elaboration is increased in irradiated lungs and pneumocytes in a dose dependent fashion.

Publication Title

Role of type II pneumocyte senescence in radiation-induced lung fibrosis.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Time

View Samples
accession-icon GSE9249
Gene expression analysis of B-NHL from MYC, MYC/IHABCL6, MYC/AIDKO and MYC/IHABCL6/AIDKO mouse models
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Most human B cell lymphomas (B-NHL) are derived from germinal centers (GCs), the structure where B-cells undergo class switch recombination (CSR) and somatic hypermutation (SHM) and are selected for high-affinity antibody production. The pathogenesis of B-NHL is associated with distinct genetic lesions, including chromosomal translocations and aberrant somatic hypermutation, which appear to arise from mistakes occurring during CSR and SHM. To ascertain the role of CSR and SHM in lymphomagenesis, we crossed three oncogene-driven (MYC, BCL6, MYC/BCL6) mouse models of B cell lymphoma with mice lacking activation-induced cytidine deaminase (AID), the enzyme required for both processes.

Publication Title

AID is required for germinal center-derived lymphomagenesis.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact