refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 10 results
Sort by

Filters

Technology

Platform

accession-icon GSE31797
Activation of SREBP in Alveolar Type II Cells Enhances Lipogenesis Causing Pulmonary Lipotoxicity
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Background: Lung function is dependent upon the precise regulation of the synthesis, storage, and catabolism of tissue and alveolar lipids.

Publication Title

Activation of sterol-response element-binding proteins (SREBP) in alveolar type II cells enhances lipogenesis causing pulmonary lipotoxicity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24295
Gene expression in epithelial and non-epithelial cells of renal origin
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We aimed to define epithelial-specific genes in the kidney. In the developing mouse kidney at E12.5 epithelial cells are restricted to the ureteric bud, while mesenchymal cells surrounding the ureteric bud are non-epithelial. The mouse renal epithelial cell line mIMCD-3 was used to represent kidney epithelia in vitro. Gene expression was analyzed using Affymetrix microarrays in ureteric bud stalks, ureteric bud tips, and mIMCD-3 cells and compared to metanephric mesenchyme.

Publication Title

The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE87769
Identification of Tfcp2l1 target genes in the mouse kidney
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcription factor <i>TFCP2L1</i> patterns cells in the mouse kidney collecting ducts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85325
Tfcp2l1 controls cellular patterning of the collecting duct.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression analysis of mouse kidney after conditional inactivation of transcription factor Tfcp2l1

Publication Title

Transcription factor <i>TFCP2L1</i> patterns cells in the mouse kidney collecting ducts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106981
Expression data from thymic non-hematopoietic stromal cells after damage
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

The thymus is extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood and this capacity diminishes considerably with age. To identify alternate regeneration pathways in the thymus, we performed an unbiased transcriptome analysis of the non-hematopoietic (CD45-) stromal cell compartment of the thymus, which is less sensitive to thymic damage compared to the CD45+ hematopoietic compartment.

Publication Title

Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE10871
Differentiated, partially- and fully-reprogrammed MEFs/B-cells
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon

Description

Expression profiles generated during dissection of the molecular mechanisms underlying direct reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells, iPS).

Publication Title

Dissecting direct reprogramming through integrative genomic analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8969
Impaired liver regeneration in Nrf2 knockout mice caused by ROS-mediated insulin/IGF-1 resistance
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The liver is frequently challenged by surgery-induced metabolic overload, viruses, or toxins, which induce the formation of reactive oxygen species. To determine the effect of oxidative stress on liver regeneration and to identify the underlying signalling pathways, we studied liver repair in mice lacking the Nrf2 transcription factor. In these animals, expression of several cytoprotective enzymes was reduced in hepatocytes, resulting in oxidative stress. As a consequence, tissue damage was aggravated, and liver regeneration after partial hepatectomy was delayed.

Publication Title

Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65464
Changes in global gene expression in SIN1 knock-out murine epithelial fibroblasts
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

RNA from wt and SIN1 knock-out MEF cell lines were compared

Publication Title

mTORC2 Responds to Glutamine Catabolite Levels to Modulate the Hexosamine Biosynthesis Enzyme GFAT1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24614
Variegated gene expression caused by cell-specific long-range DNA interactions
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Mammalian genomes contain numerous DNA elements with potential transcription regulatory function but unknown target genes. We used transgenic, gain-of-function mice with an ectopic copy of the beta-globin locus control region (LCR) to better understand how regulatory elements dynamically search the genome for target genes. We find that the LCR samples a restricted nuclear sub-volume in which it forms preferential contacts with genes controlled by shared transcription factors. One contacted gene, betah1, located on another chromosome, is upregulated, providing genetic demonstration that mammalian enhancers can function between chromosomes. Upregulation is not pan-cellular but confined to selected jackpot cells significantly enriched for inter-chromosomal LCR-betah1 interactions. This implies that long-range DNA contacts are relatively stable and cell-specific and, when functional, cause variegated expression. We refer to this as spatial effect variegation (SEV). The data provide a dynamic and mechanistic framework for enhancer action, important for assigning function to the one- and three-dimensional structure of DNA.

Publication Title

Variegated gene expression caused by cell-specific long-range DNA interactions.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE21842
Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

We report a Jak2V617F knock-in mouse myeloproliferative neoplasm (MPN) model resembling human polycythemia vera (PV). The MPN is serially transplantable and we demonstrate that the hematopoietic stem cell (HSC) compartment has the unique capacity for disease initiation but does not have a selective competitive advantage over wild type HSCs. In contrast, myeloid progenitor populations are expanded and skewed towards the erythroid lineage, but cannot transplant the disease. Treatment with a JAK2 kinase inhibitor ameliorated the MPN phenotype, but did not eliminate the disease-initiating population. These findings provide insights into the consequences of JAK2 activation on HSC differentiation and function and have the potential to inform therapeutic approaches to JAK2V617F positive MPN.

Publication Title

Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact