refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 41 results
Sort by

Filters

Technology

Platform

accession-icon GSE9460
Mouse model of Osteosarcoma
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

expression analysis from a genetically engineered mouse model of osteosarcoma

Publication Title

Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13231
The effect of inherited polymorphism on prognostic gene expression signatures
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The origins of breast cancer prognostic gene expression profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13227
(AKR/J x FVB/NJ)F1 versus (DBA/2J x FVB)F1 Thymus expression data
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

F1 hybrids from (AKR/J x FVB/NJ) and (DBA/2J x FVB/NJ) outcrosses display a 20-fold difference in mammary tumor metastatic capacity, due to differences in inherited polymorphisms. Expression studies were performed to determine whether polymorphism-driven gene expression signatures predictive of outcome could be generated from normal tissues

Publication Title

The origins of breast cancer prognostic gene expression profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13223
(AKR/J x FVB/NJ)F1 versus (DBA/2J x FVB)F1 bone marrow expression data
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

F1 hybrids from (AKR/J x FVB/NJ) and (DBA/2J x FVB/NJ) outcrosses display a 20-fold difference in mammary tumor metastatic capacity, due to differences in inherited polymorphisms. Expression studies were performed to determine whether polymorphism-driven gene expression signatures predictive of outcome could be generated from normal tissues

Publication Title

The origins of breast cancer prognostic gene expression profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13222
(AKR/J x FVB/NJ)F1 versus (DBA/2J x FVB)F1 blood expression data
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

F1 hybrids from (AKR/J x FVB/NJ) and (DBA/2J x FVB/NJ) outcrosses display a 20-fold difference in mammary tumor metastatic capacity, due to differences in inherited polymorphisms. Expression studies were performed to determine whether polymorphism-driven gene expression signatures predictive of outcome could be generated from normal tissues

Publication Title

The origins of breast cancer prognostic gene expression profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12802
Small molecule inducers of pancreatic beta-cell expansion
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

New insulin-producing pancreatic beta-cells are formed primarily by self-replication during adult life. To identify small molecules that can induce beta cell replication, a large chemical library was screened for proliferation of growth-arrested, reversibly immortalized mouse beta-cells using an automated high-throughput screening platform. A number of structurally diverse, active compounds were identified including phorbol esters, which likely act through protein kinase C, and a group of thiophene-pyrimidines that stimulate beta-cell proliferation by activating the Wnt signaling pathway. A group of dihydropyridine (DHP) derivatives was also shown to reversibly induce beta-cell replication in vitro by activating L-type calcium channels (LTCCs). Our data indicate that the LTCC agonist 2a affects the expression of genes involved in cell cycle progression and cellular proliferation. Furthermore, treatment of beta-cells with both LTCC agonist 2a and the Glp-1 receptor agonist Ex-4 showed an additive effect on beta-cell replication. The identification of small molecules that induce beta-cell proliferation suggests that it may be possible to reversibly expand other quiescent cells to overcome deficits associated with degenerative and/or autoimmune diseases.

Publication Title

Identification of small-molecule inducers of pancreatic beta-cell expansion.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23161
Beta cell overexpression of HSD11B1 in high fat fed mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

To model the potential diabetogenic effects of higher level of HSD11B1 in b-cells of the pancreas in vivo, we created a transgenic model overexpressing HSD11B1 under the mouse insulin I promoter (MIP-HSD1) in diabetes-prone C57Bl/KsJ mice. KsJ wild type and MIP-HSD1 heterozygous mice have been high fat fed for 12 weeks. Pancreata have been perfused with collagenase and islets isolated by hand picking. Isolated islets (around 500) coming from at least 3 mice (around 200/mice) have been directly lysed in Trizol. Total RNA have been extracted by Trizol plus RNA Purification Kit (invitrogen).

Publication Title

Optimal elevation of β-cell 11β-hydroxysteroid dehydrogenase type 1 is a compensatory mechanism that prevents high-fat diet-induced β-cell failure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10246
GNF Mouse GeneAtlas V3
  • organism-icon Mus musculus
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon

Description

High-throughput gene expression profiling has become an important tool for investigating transcriptional activity in a variety of biological samples. To date, the vast majority of these experiments have focused on specific biological processes and perturbations. Here, we profiled gene expression from a diverse array of normal tissues, organs, and cell lines in mice. Keywords: multiple tissues

Publication Title

Expression analysis of G Protein-Coupled Receptors in mouse macrophages.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19875
Expression data from murine hearts exposed to ischemic preconditioning comparing A2BAR null and wildtype BL6/C57 mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Genetically targeted mice with deficiency for the A2BAR show increased susceptibility to acute myocardial ischemia and are not protected by IP, a powerful strategy for cardioprotection, where short and repeated episodes of ischemia and reperfusion prior to myocardial infarction result in attenuation of infarct size.

Publication Title

Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE19780
A novel approach to investigate tissue-specific trinucleotide repeat instability
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

In Huntingtons disease (HD), an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors.

Publication Title

A novel approach to investigate tissue-specific trinucleotide repeat instability.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact