refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE6065
Murine host cell response to Aeromonas infection
  • organism-icon Mus musculus
  • sample-icon 251 Downloadable Samples
  • Technology Badge Icon

Description

Aims: To assess the virulence of multiple Aeromonas spp. using two models, a neonatal mouse assay and a mouse intestinal cell culture.

Publication Title

Evaluating virulence of waterborne and clinical Aeromonas isolates using gene expression and mortality in neonatal mice followed by assessing cell culture's ability to predict virulence based on transcriptional response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11178
Control of hematopoietic stem cell quiescence by the E3 Ubiquitin Ligase Fbw7
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Ubiquitination is a post-translational mechanism of control of diverse cellular processes. We focus here on the ubiquitin ligase Fbw7, a recently identified hematopoietic tumor suppressor that can target for degradation several important oncogenes including Notch1, c-Myc and cyclin E. We have generated conditional Fbw7 knock-out animals and inactivated the gene in hematopoietic stem cells (HSC) and their differentiated progeny. Deletion of Fbw7 specifically and rapidly affects the HSC compartment in a cell-autonomous manner. Fbw7-/- HSCs show defective maintenance of quiescence, leading to impaired self-renewal and a severe loss of competitive repopulating capacity. Furthermore, Fbw7-/- HSC are unable to colonize the thymus leading to a profound depletion of T cell progenitors. Deletion of Fbw7 in bone marrow stem cells and progenitors leads to the stabilization of c-Myc, a transcription factor previously implicated in HSC self-renewal. On the other hand, neither Notch1 nor cyclin E are stabilized in the bone marrow of Fbw7 deficient mice. Genome-wide transcriptome studies of Fbw7-/- HSC and hematopoietic progenitors indicate that Fbw7 controls, through the regulation of HSC cell cycle entry, the global transcriptional signature that is associated with the quiescent, self-renewing HSC phenotype.

Publication Title

Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact