refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12 results
Sort by

Filters

Technology

Platform

accession-icon GSE46498
Atrial Identity Is Determined by A COUP-TFII Regulatory Network
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Atrial identity is determined by a COUP-TFII regulatory network.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE46496
Atrial Identity Is Determined by A COUP-TFII Regulatory Network (RNA)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Atria and ventricles exhibit distinct molecular profiles that produce structural and functional differences between the two cardiac compartments. However, factors that determine these differences remain largely undefined. Cardiomyocyte-specific COUP- TFII ablation produces ventricularized atria that exhibit ventricle-like action potentials, increased cardiomyocyte size, and development of extensive T-tubules.

Publication Title

Atrial identity is determined by a COUP-TFII regulatory network.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE100015
Microarray analysis of mRNA expression in E14.5 and E16.5 mouse ovaries with and without Coup-tfII (Nr2f2)
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

COUP-TFII (NR2F2) is expressed in somatic cells in fetal ovary. To investigate the function of COUP-TFII , we used Cre-flox model to ablate Coup-tfII in the fetal ovaries

Publication Title

Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54678
A pivotal role of SRC-2 in Metastatic and Castration Resistant Prostate Cancer
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

SRC-2 is frequently amplified or overexpressed in metastatic prostate cancer patients. In this study, we used genetically engineered mice, overexpressing SRC-2 specifically in the prostate epithelium as a mouse model to examine the role of SRC-2 in prostate tumorigenesis. Over-expression of SRC-2 in PTEN heterozygous mice accelerates PTEN mutation induced tumor progression and develops a metastasis-prone cancer.

Publication Title

Androgen deprivation-induced NCoA2 promotes metastatic and castration-resistant prostate cancer.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE10493
Novartis 12 Strain Diet Sex Survey
  • organism-icon Mus musculus
  • sample-icon 144 Downloadable Samples
  • Technology Badge Icon

Description

High-fat diets are associated with increased obesity and metabolic disease in mice and humans. Here we used analysis of variance (ANOVA) to scrutinize a microarray data set consisting of 10 inbred strains of mice from both sexes fed atherogenic high-fat and control chow diets. An overall F-test was applied to the 40 unique groups of strain-diet-sex to identify 15,288 genes with altered transcription. Bootstrapping k-means clustering separated these changes into four strain-dependent expression patterns, including two sex-related profiles and two diet-related profiles. Sex-induced effects correspond to secretion (males) or fat and energy metabolism (females), whereas diet-induced changes relate to neurological processes (chow) or immune response (high-fat). The full set of pairwise contrasts for differences between strains within sex (90 different statistical tests) uncovered 32,379 total changes. These differences were unevenly distributed across strains and between sexes, indicating that strain-specific responses to high-fat diet differ between sexes. Correlations between expression levels and 8 obesity-related traits identified 5,274 associations between transcript abundance and measured phenotypic endpoints. From this number, 2,678 genes are positively correlated with total cholesterol levels and associate with immune-related categories while 2,596 genes are negatively correlated with cholesterol and connect to cholesterol synthesis.

Publication Title

Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE48007
Targeted disruption of Hotair leads to homeotic transformation and de-repression of imprinted genes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Targeted disruption of Hotair leads to homeotic transformation and gene derepression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48004
Targeted disruption of Hotair leads to homeotic transformation and de-repression of imprinted genes [Microarray Analysis]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Long noncoding RNAs (lncRNAs) are thought to be prevalent regulators of gene expression, but the consequences of lncRNA inactivation in vivo are mostly unknown. Here we show that targeted deletion of mouse Hotair lncRNA leads to de-repression of hundreds of genes, resulting in homeotic transformation of the spine and malformation of metacarpal-carpal bones. RNA-seq and conditional inactivation reveal an ongoing requirement of Hotair to repress HoxD genes and multiple imprinted loci such as Dlk1-Meg3 and Igf2-H19. Hotair binds to both Polycomb repressive complex 2 that methylates histone H3 at lysine 27 (H3K27) and Lsd1 complex that demethylates histone H3 at lysine 4 (H3K4) in vivo. Hotair inactivation causes coordinate H3K27me3 loss and H3K4me3 gain at select target genes throughout the genome. These results reveal a shared regulatory mechanism to enforce silent chromatin state at Hox and imprinted genes via Hotair lncRNA.

Publication Title

Targeted disruption of Hotair leads to homeotic transformation and gene derepression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54374
An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon

Description

The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene modules in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Module network analysis linked established regulators like Neurog3 to unrecognized roles in endocrine secretion and protein transport, and nominated multiple candidate regulators of pancreas development. Phenotyping mutant mice revealed that candidate regulatory genes encoding transcription factors, including Bcl11a, Etv1, Prdm16 and Runx1t1, are essential for pancreas development or glucose control. Our integrated approach provides a unique framework for identifying regulatory networks underlying pancreas development and diseases like diabetes mellitus.

Publication Title

An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19142
Single cell analysis of the Common Lymphoid Progenitor compartment reveals functional and molecular heterogeneity
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

In order to investigate molecular events involved in the regulation of lymphoid lineage commitment, we crossed lamda5 reporter transgenic mice to mice where the GFP gene is inserted into the Rag1 locus. This allowed us to sub-fractionate common lymphoid progenitors (CLPs) and pre-pro-B cells into lamda5-Rag1low, lamda5-Rag1high and lamda5+Rag1high cells. Clonal in vitro differentiation analysis demonstrated that Rag1low cells gave rise to B/T and NK cells. Rag1high cells displayed reduced NK-cell potential with preserved capacity to generate B- and T-lineage cells while the lamda5+ cells were B-lineage restricted. Ebf1 and Pax5 expression was largely confined to the Rag1high populations. These cells also expressed a higher level of the surface protein LY6D providing an additional tool for the analysis of early lymphoid development. These data suggest that the classical CLP compartment composes a mixture of cells with more or less restricted lineage potentials opening new possibilities to investigate early hematopoiesis.

Publication Title

Single-cell analysis of the common lymphoid progenitor compartment reveals functional and molecular heterogeneity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106981
Expression data from thymic non-hematopoietic stromal cells after damage
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

The thymus is extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood and this capacity diminishes considerably with age. To identify alternate regeneration pathways in the thymus, we performed an unbiased transcriptome analysis of the non-hematopoietic (CD45-) stromal cell compartment of the thymus, which is less sensitive to thymic damage compared to the CD45+ hematopoietic compartment.

Publication Title

Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration.

Sample Metadata Fields

Sex, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact