refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 20 results
Sort by

Filters

Technology

Platform

accession-icon GSE12599
Transcriptional profiling of mouse glomerulus in lipopolysaccharide-induced proteinuria model
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

The pathogenic mechanisms of common kidney glomerular diseases, including the vast majority of cases of proteinuria, remain unknown.

Publication Title

Glomerular transcriptome changes associated with lipopolysaccharide-induced proteinuria.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12601
Development and Diversification of Retinal Amacrine Interneurons at Single Cell Resolution
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon

Description

The vertebrate retina uses diverse neuronal cell types arrayed into complex neural circuits to extract, process and relay information from the visual scene to the higher order processing centers of the brain. Amacrine cells, a diverse class of inhibitory interneurons, are thought to mediate the majority of the processing of the visual signal that occurs within the retina. Despite morphological characterization, the number of known molecular markers of amacrine cell types is still much smaller than the 26 morphological types that have been identified. Furthermore, it is not known how this diversity arises during development. Here, we have combined in vivo genetic labeling and single cell genome-wide expression profiling to: 1) Identify specific molecular types of amacrine cells; 2) Demonstrate the molecular diversity of the amacrine cell class.

Publication Title

Development and diversification of retinal amacrine interneurons at single cell resolution.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23700
HOP homeobox (Hopx) and Histone deacetylase-2 (Hdac2) deficiency effect on the embryonic heart
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of heart ventricles from Hopx, Hdac2, and both Hopx-Hdac2 deficient embryos at embryonic day E16.5. Results provide insight into the role of Hopx and Hdac2 in cardiac development.

Publication Title

Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25825
Expression data from MxCre;E2F1-/-2-/-3f/f Cd11B myeloid cells
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

To understand the underlying cause for the observed apoptosis in E2f1-3 deficient myeloid cells. We compared gene expression profiles of Cd11b+ sorted myeloid cells isolated from bone marrow of control (E2F1-/- ) and experimental (Mxcre;E2F1-/-2-/-3f/f ) mice.

Publication Title

E2f1-3 are critical for myeloid development.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE17160
Regulatory mechanisms of TSG-6 (TNF-alfa-induced protein-6: Tnfip6)-deficient and wild-type synovial fibroblasts
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon

Description

BALB/c mice are susceptible to proteoglycan (PG) aggrecan-induced arthritis (PGIA), and the absence of TSG-6 further increases susceptibility and local inflammatory reactions, including neutrophil invasion into the joints. To gain insight into the mechanisms of TSG-6 action, synovial fibroblasts were isolated from wild-type and TSG-6-KO mice, cultured and exposed to various agents affecting either the TSG-6 expression and/or modify the intracellular function of TSG-6.

Publication Title

TSG-6 protein, a negative regulator of inflammatory arthritis, forms a ternary complex with murine mast cell tryptases and heparin.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE19793
MyD88-mediated signaling prevents development of adenocarcinomas of the colon via interleukin-18
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

Inflammation has pleiotropic effects on carcinogenesis and tumor progression. Signaling through the adaptor protein MyD88 promotes carcinogenesis in several chemically induced cancer models. Interestingly, we observed a protective role for MyD88 in the development of AOM/DSS colitis-associated cancer. The inability of Myd88-/- mice to heal ulcers generated upon injury creates an inflammatory environment that increases the frequency of mutations and results in a dramatic increase in adenoma formation and cancer progression. Susceptibility to colitis development and enhanced polyp formation were also observed in Il18-/- mice upon AOM/DSS treatment, suggesting that the phenotype of MyD88 knockouts is in part due to their inability to signal through the IL-18 receptor. This study revealed a previously unknown level of complexity surrounding MyD88 activities downstream of different receptors that differentially impact tissue homeostasis and carcinogenesis.

Publication Title

MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE30457
Dissecting primary (translation independent) from secondary (translation dependent) IFN-mediated differential gene expression
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

NIH-3T3 cells were pretreated for 15 min with either DMSO (mock) or cycloheximide followed by addition of either mock, 100 U/ml IFNalpha or 100 U/ml IFNgamma for 1h. During the last 30 min, 500 M 4-thiouridine was added to cell culture medium. Total cellular RNA was isolated using Trizol reagent and nascent RNA was purified as described (Dlken et al. RNA 2008) . Three replicates of nascent RNA were analyzed by Affymetrix Mouse Gene ST 1.0 arrays

Publication Title

Deciphering the modulation of gene expression by type I and II interferons combining 4sU-tagging, translational arrest and in silico promoter analysis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE27451
Functions of HDAC1 and HDAC2 in Schwann cells during postnatal
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

The aim of our study is to determine the functions of histone deacetylases (HDACs) 1 and 2 in Schwann cells during postnatal development of the peripheral nervous system (PNS). Schwann cells are the myelinating glial cells of the PNS. At birth, mouse sciatic nerves mature in 2 subsequent phases: 1/ big caliber axons get sorted into a 1 to 1 relationship with Schwann cells, 2/ Schwann cells build a myelin sheath around sorted axons. In mice where both HDAC1 & HDAC2 have been specifically knocked out in Schwann cells, both phases are impaired. HDACs are chromatin remodeling enzymes, they can thus alter gene expression directly. We want to identify which genes controlled by HDAC1 and HDAC2 in Schwann cells are necessary for the maturation of sciatic nerves. Because HDAC1 and HDAC2 can compensate for each other loss to some extend, we will first analyze changes of gene expression in HDAC1/HDAC2 double KO animals. We expect to gain critical insights into the molecular mechanisms controlling Schwann cell differentiation and myelination. This knowledge is of key importance for the success of regenerative medicine in peripheral neuropathies, nerve tumors, and transplantation paradigms in non-regenerative CNS lesions and in large PNS injuries.

Publication Title

HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE13730
BALB/c mice genetically susceptible to proteoglycan-induced arthritis and spondylitis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

BALB/c mice are susceptible to proteoglycan (PG) aggrecan-induced arthritis (PGIA), a murine model of rheumatoid arthritis (Glant,T.T. and Mikecz,K., Proteoglycan aggrecan-induced arthritis. A murine autoimmune model of rheumatoid arthritis. Methods Mol.Med. 2004. 102: 313-338.). However, there are marked differences among BALB/c colonies (maintained by different vendors at different locations) in PGIA onset and severity, which could be the result of subtle variations in their genetic background.

Publication Title

BALB/c mice genetically susceptible to proteoglycan-induced arthritis and spondylitis show colony-dependent differences in disease penetrance.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE6770
Gene Expression Data in HDAC2 KO Myocardium
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to detail the global programme of gene expression underlying cardiac development by HDAC2 and identified distinct classes of up-regulated and down-regulated genes during this process.

Publication Title

Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact