refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE55304
Perinatal malnutrition in male mice influences gene expression in the next generation offspring: Potential role of epigenetics.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Perinatal nutritional imbalances may have long-lasting consequences on health and disease, increasing risk of obesity, insulin resistance, type 2 diabetes or cardiovascular disease. This idea has been conceptualized in the Developmental Origins of Health and Disease Hypothesis (DOHaD). In addition, there is evidence that such early-programmed phenotypes can be transmitted to the following generation(s). It is proposed that, environmentally induced, transmission of disease risk is mediated by epigenetic mechanisms.

Publication Title

In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE27379
CD8+ T cell mediated lung inflammation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Role for naturally occurring CD4+CD25+Foxp3+ regulatory T cells (nTregs) in counterbalancing this process. Using a transgenic murine model for autoimmune-mediated lung disease, we demonstrated that, despite pulmonary inflammation, lung-specific CD8+ T cells can reside quiescently in close proximity to self-antigen. Whereas self-reactive CD8+ T cells in the inflamed lung and lung-draining lymph nodes down-regulated the expression of effector molecules, those located in the spleen appeared to be partly antigen-experienced and displayed a memory-like phenotype. Since ex vivo-reisolated self-reactive CD8+ T cells were very well capable to respond to the antigen in vitro, we investigated a possible contribution of nTregs to the immune control over autoaggressive CD8+ T cells in the lung.

Publication Title

CD4+CD25+Foxp3+ regulatory T cells are dispensable for controlling CD8+ T cell-mediated lung inflammation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47965
Environmental factors transmitted by aryl hydrocarbon receptor influence severity of psoriatic skin inflammation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Subject

View Samples
accession-icon GSE47607
Environmental factors transmitted by aryl hydrocarbon receptor influence severity of psoriatic skin inflammation [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Environmental stimuli are known to contribute to psoriasis pathogenesis and that of other autoimmune diseases, but the mechanism is unknown. Here we show that the aryl hydrocarbon receptor (AhR), a transcription factor that senses environmental stimuli, modulates pathology in psoriasis. AhR-activating ligands reduced inflammation in the lesional skin of psoriasis patients, whereas AhR antagonists upregulated inflammation. Similarly, AhR signaling via the endogenous FICZ ligand reduced the inflammatory response in the imiquimod-induced model of psoriasis and AhR deficient mice exhibited a substantial exacerbation of the disease, compared to AhR sufficient controls. Non-haematopoietic cells, in particular keratinocytes, were responsible for this hyper-inflammatory response, which involved increased reactivity to IL-1beta and upregulation of AP-1 family members of transcription factors. Thus, our data suggest a critical role for AhR in the regulation of inflammatory responses and open the possibility for novel therapeutic strategies in chronic inflammatory disorders.

Publication Title

Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71090
Expression data from isogenic Pten WT or KO mouse T-ALLs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71087
Expression data from isogenic Pten WT or KO mouse T-ALLs treated with DBZ or DMSO
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

To investigate the underlying mechanisms mediating resistance to NOTCH inhibition in Pten-null T-ALL tumor cells we performed gene expression profiling of isogenic Pten-positive and Pten-deleted leukemia lymphoblasts after acute treatment with DBZ in vivo.

Publication Title

Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact