refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE10246
GNF Mouse GeneAtlas V3
  • organism-icon Mus musculus
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon

Description

High-throughput gene expression profiling has become an important tool for investigating transcriptional activity in a variety of biological samples. To date, the vast majority of these experiments have focused on specific biological processes and perturbations. Here, we profiled gene expression from a diverse array of normal tissues, organs, and cell lines in mice. Keywords: multiple tissues

Publication Title

Expression analysis of G Protein-Coupled Receptors in mouse macrophages.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33253
Transcriptional reprogramming of tumor-associated endothelial cells by disruption of TNF- signaling
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Endothelial inflammation contributes to the pathogenesis of numerous human diseases; however, the role of tumor endothelial inflammation in the growth of experimental tumors and its influence on the prognosis of human cancers is less understood. TNF-, an important mediator of tumor stromal inflammation, is known to target the tumor vasculature. In this study, we demonstrate that B16-F1 melanomas grew more rapidly in C57BL/6 wild-type (WT) mice than in syngeneic mice with germline deletions of both TNF- receptors (KO). This enhanced tumor growth was associated with increased COX2 inflammatory expression in WT tumor endothelium compared to endothelium in KO mice. We purified endothelial cells from WT and KO tumors and characterized dysregulated gene expression, which ultimately formed the basis of a 6-gene Inflammation-Related Endothelial-derived Gene (IREG) signature. This inflammatory signature expressed in WT tumor endothelial cells was trained in human cancer datasets and predicted a poor clinical outcome in breast cancer, colon cancer, lung cancer and glioma. Consistent with this observation, conditioned media from human endothelial cells treated with pro-inflammatory cytokines (TNF- and interferons) accelerated the growth of human colon and breast tumors in immune-deprived mice as compared with conditioned media from untreated endothelial cells. These findings demonstrate that activation of endothelial inflammatory pathways contributes to tumor growth and progression in diverse human cancers.

Publication Title

Tumor endothelial inflammation predicts clinical outcome in diverse human cancers.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact