refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 29 results
Sort by

Filters

Technology

Platform

accession-icon GSE10658
IL-9/mast cell-mediated intestinal permeability predispose to oral antigen hypersensitivity
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Small intestine of a pool of three Wt mice and a pool of 3 IL-9tg mice in a balb/c backround.

Publication Title

IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13948
Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver

Publication Title

Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27049
Effects of Dcp1a and Dcp2 knockdown during mouse oocyte maturation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Oocyte maturation is accompanied by a transition from mRNA stability to instability. We investigated the role of DCP1A and DCP2, proteins responsible for mRNA decapping, in mRNA destabilization during mouse oocyte maturation.

Publication Title

Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38538
Expression data from E12.5 NSP cells, CTL v REST shRNA
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

REST is a master regulator of genes that are involved in the acqusition of neuronal fate. The role of REST is not well understood so we attempted to investigate the role of REST in the development of neural cells by analysing the genes that are upregulated when REST is knocked down via shRNA

Publication Title

REST regulates the pool size of the different neural lineages by restricting the generation of neurons and oligodendrocytes from neural stem/progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33368
Gene expression atlas for mouse olfactory sensory neurons
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Identification of all genes expressed by mouse olfactory sensory neurons; genes expressed in mature neurons, immature neurons, or both were distinguished. Independent validation of enrichment ratio values supported by statistical assessment of error rates was used to build a database of statistical probabilities of the expression of all mRNAs detected in mature neurons, immature neurons, both types of neurons (shared), and the residual population of all other cell types.

Publication Title

Genomics of mature and immature olfactory sensory neurons.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE9857
Striatal gene expression data from 12 weeks-old R6/2 mice and control mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9803
Striatal gene expression data from 12 weeks-old R6/2 mice and control mice (set 1)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2(Q150/Q150), 18-month Hdh(Q92/Q92) and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9804
Striatal gene expression data from 12 weeks-old R6/2 mice and control mice (set 2)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2(Q150/Q150), 18-month Hdh(Q92/Q92) and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10202
Striatal gene expression data from 22-month-old CHL2 mice and control mice.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Achieving a mechanistic understanding of disease and initiating preclinical therapeutic trials necessitate the study of huntingtin toxicity and its remedy in model systems. To allow the engagement of appropriate experimental paradigms, Huntingtons disease (HD) models need to be validated in terms of how they recapitulate a particular aspect of human disease. In order to examine transcriptome-related effects of mutant huntingtin, we compared striatal mRNA profiles from seven genetic mouse models of disease to that of postmortem human HD caudate using microarray analysis. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in models of HD took longer to appear, 15-month and 22-month CHL2Q150/Q150, 18-month HdhQ92/Q92 and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. When the affected genes were compared across models, a robust concordance was observed. Importantly, changes concordant across multiple lines mice were also in excellent agreement with the mRNA changes seen in human HD caudate. Although it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared to those caused by expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. There was, however, an overall concordance between transcriptomic signature and disease stage. We thus conclude that the transcriptional changes of HD can be modelled in several available lines of transgenic mice, comprising lines expressing both N-terminal and full-length mutant huntingtin proteins. The combined analysis of mouse and human HD transcriptomes provides an important chronology of mutant huntingtin's gene expression effects.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE25765
Microarray gene expression profiling of cardiac genes at the onset of heart failure
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Atherosclerosis and pressure overload are major risk factors for the development of heart failure in patients. Cardiac hypertrophy often precedes the development of heart failure. However, underlying mechanisms are incompletely understood. To investigate pathomechanisms underlying the transition from cardiac hypertrophy to heart failure we used experimental models of atherosclerosis- and pressure overload-induced cardiac hypertrophy and failure, i.e. apolipoprotein E (apoE)-deficient mice, which develop heart failure at an age of 18 months, and non-transgenic C57BL/6J (B6) mice with heart failure triggered by 6 months of pressure overload induced by abdominal aortic constriction (AAC). The development of heart failure was monitored by echocardiography, invasive hemodynamics and histology. The microarray gene expression study of cardiac genes was performed with heart tissue from failing hearts relative to hypertrophic and healthy heart tissue, respectively. The microarray study revealed that the onset of heart failure was accompanied by a strong up-regulation of cardiac lipid metabolism genes involved in fat synthesis, storage and oxidation.

Publication Title

Up-regulation of the cardiac lipid metabolism at the onset of heart failure.

Sample Metadata Fields

Age, Specimen part, Disease

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact