refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 54 results
Sort by

Filters

Technology

Platform

accession-icon GSE32529
Mouse ischemic tolerance genomic analysis of the brain and blood.
  • organism-icon Mus musculus
  • sample-icon 218 Downloadable Samples
  • Technology Badge Icon

Description

Ischemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand, lipopolysaccharide (LPS) or the TLR9 ligand, unmethylated CpG ODNs prior to transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain and blood genomic profiles in response to preconditioning with these TLR ligands and to preconditioning via exposure to brief ischemia.

Publication Title

Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE21902
Expression Data from chemical induced tumors obtained from NDR1+/+, NDR1+/- and NDR1-/- mice
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon

Description

Loss and heterozygosity for NDR1 predisposes mice to T-cell lymphoma development. To analyze mechanisms of tumor development in these mice chemically (ENU)-induced tumors were collected and RNA was extracted.

Publication Title

Ablation of the kinase NDR1 predisposes mice to the development of T cell lymphoma.

Sample Metadata Fields

Sex, Specimen part, Disease, Treatment

View Samples
accession-icon GSE25140
Prostate specific Pten deletion, Pten-Smad4 deletion, and Pten-p53 deletion
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to detail the global gene expression and identified differentially expressed gene list between wild-type anterior prostates and Ptenpc-/- anterior prostates, Ptenpc-/-Smad4pc-/- and Ptenpc-/- anterior prostates, Ptenpc-/-p53pc-/- and Ptenpc-/- anterior prostates at 15 weeks of age.

Publication Title

SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE5654
Essential role of Jun family transcription factors in PU.1-induced leukemic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Knockdown of the transcription factor PU.1 (Spi1) leads to acute myeloid leukemia (AML) in mice. We examined the transcriptome of PU.1 knockdown hematopoietic stem cells (HSC) in the preleukemic phase by linear amplification and genome-wide array analysis to identify transcriptional changes preceding malignant transformation. Hierarchical cluster analysis and principal component analysis clearly distinguished PU.1 knockdown from wildtype HSC. Jun family transcription factors c-Jun and JunB were among the top downregulated targets. Retroviral restoration of c-Jun expression in bone marrow cells of preleukemic mice partially rescued the PU.1-initiated myelomonocytic differentiation block. Lentiviral restoration of JunB at the leukemic stage led to reduced clonogenic growth, loss of leukemic self-renewal capacity, and prevented leukemia in transplanted NOD-SCID mice. Examination of 305 AML patients confirmed the correlation between PU.1 and JunB downregulation and suggests its relevance in human disease. These results delineate a transcriptional pattern that precedes the leukemic transformation in PU.1 knockdown HSC and demonstrate that decreased levels of c-Jun and JunB contribute to the development of PU.1-induced AML by blocking differentiation (c-Jun) and increasing self-renewal (JunB). Therefore, examination of disturbed gene expression in HSC can identify genes whose dysregulation is essential for leukemic stem cell function and are targets for therapeutic interventions.

Publication Title

Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18446
BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The biology of chronic myeloid leukemia (CML)-stem cells is still incompletely understood. Therefore, we previously developed an inducible transgenic mouse model in which stem cell targeted induction of BCR-ABL expression leads to chronic phase CML-like disease. Here, we now demonstrate that the disease is transplantable using BCR-ABL positive LSK cells (lin-Sca-1+c-kit+). Interestingly, the phenotype is enhanced when unfractionated bone marrow (BM) cells are transplanted. However, neither progenitor cells (lin-Sca-1-c-kit+) nor mature granulocytes (CD11b+Gr-1+), or potential stem cell niche cells were able to transmit the disease or alter the phenotype. The phenotype was largely independent of BCR ABL priming prior to transplant. However, BCR-ABL abrogated the potential of LSK cells to induce full blown disease in secondary recipients. Subsequently, we found that BCR-ABL increased the fraction of multipotent progenitor cells (MPP) at the expense of long term HSC (LT-HSC) in the BM. Microarray analyses of LSK cells revealed that BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development. Our results suggest that BCR-ABL induces differentiation of LT-HSC and decreases their self renewal capacity. Furthermore, reversion of BCR-ABL eradicates mature cells while leukemic stem cells persist, giving rise to relapsed CML upon re-induction of BCR-ABL.

Publication Title

BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13121
SIRT1 redistribution on chromatin promotes genome stability but alters gene expression during aging
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE13120
Age-related gene expression changes in mouse neocortex
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Aging is associated with major nuclear changes affecting genomic integrity and gene expression. Here we compare the gene expression profiles in the neocortex of young (5 months old) and old (30 months old) B6xC3 F1 mice.

Publication Title

SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE11206
The effect of embryo biopsy on global patterns of gene expression in the mouse blastocyst
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

Preimplantation Genetic Testing (PGT), which encompasses both Preimplantation Genetic Diagnosis (PGD) and Preimplantation Genetic Screening (PGS), is a form of prenatal screening done on embryos conceived through assisted reproduction techniques (ART) prior to the initiation of pregnancy to ensure that only select embryos are used for transfer. PGT is typically performed on 8-cell embryos derived from either in vitro fertilization or intracytoplasmic sperm injection (ICSI) followed by extended culture. PGT requires a highly invasive embryo biopsy procedure that involves 1) incubating embryos in divalent-cation-deficient medium to disrupt cell adhesion, 2) breaching the protective zona pellucida with acid Tyrodes, laser drilling, or mechanical force and 3) aspirating one or two blastomeres. In this study we developed a mouse model of the embryo biopsy procedure inherent to PGT to determine the effect of various aspects of the procedure (incubation in Ca2+/Mg2+-free medium (CMF), acid Tyrodes treatment, blastomere aspiration), performed individually or in combination, on global patterns of gene expression in the resulting blastocysts.

Publication Title

The effect of blastomere biopsy on preimplantation mouse embryo development and global gene expression.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE43381
Expression profiling across mouse epithelial tissues
  • organism-icon Mus musculus
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon

Description

To characterize genes, pathways, and transcriptional regulators enriched in the mouse cornea, we compared the expression profiles of whole mouse cornea, bladder, esophagus, lung, proximal small intestine, skin, stomach, and trachea.

Publication Title

The Ets transcription factor EHF as a regulator of cornea epithelial cell identity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE3554
Microarray Analysis of Retinal Gene Expression in the DBA/2J Model of Glaucoma
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Purpose: The DBA/2J mouse is a model for secondary angle-closure glaucoma due to iris atrophy and pigment dispersion, which ultimately leads to increased intraocular pressure (IOP). We sought to correlate changes in retinal gene expression with glaucoma-like pathology by performing microarray analysis of retinal RNA from DBA/2J mice at 3 months before disease onset, and at 8 months, after IOP elevation. Methods: IOP was monitored monthly in DBA/2J animals by Tono-Pen and animals with normal (3 months) or elevated IOP (8 months) were identified. RNA was prepared from 3 individual retinas at each age, and the RNA was amplified and used to generate biotin-labeled probe for high density mouse Affymetrix arrays (U430.2). A subset of genes was selected for confirmation by quantitative RT-PCR using independent retina samples from DBA/2J animals at 3, 5 and 8 months of age, and compared to retinas from C57BL/6J control animals at 3 and 8 months. Results: There were changes in expression of 68 genes, with 32 genes increasing and 36 genes decreasing at 8 months versus 3 months. Upregulated genes were associated with immune response, glial activation, signaling and gene expression, while down-regulated genes included multiple crystallin genes. Significant changes in 9 upregulated genes and 2 downregulated genes were confirmed by quantitative RT-PCR, with some showing changes in expression by 5 months. Conclusions: DBA/2J retina shows evidence for glial activation and an immune-related response following IOP elevation, similar to what has been reported following acute elevation of IOP in other models.

Publication Title

Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma.

Sample Metadata Fields

Age

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact