refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 11 results
Sort by

Filters

Technology

Platform

accession-icon GSE17880
Expression data from B6C3F1 mice treated with 2-butoxyethanol and reduced oxygen
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The role of hypoxia in 2-butoxyethanol-induced hemangiosarcoma.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE17266
Expression data from B6C3F1 mice treated with baclofen
  • organism-icon Mus musculus
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon

Description

Mice were treated with either 100mg/kg baclofen or 0.5% methylcellulose alone by oral gavage for 1 or 5 days.

Publication Title

The role of hypoxia in 2-butoxyethanol-induced hemangiosarcoma.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE17794
Expression data from B6C3F1 mice treated with 2-butoxyethanol
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon

Description

Mice were dosed with 2-BE (900mg/kg) or vehicle by oral gavage and sacrificied either after 4 hours of a single dose or after 7 days of daily dosing.

Publication Title

The role of hypoxia in 2-butoxyethanol-induced hemangiosarcoma.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE6285
Expression data from brains of mice fed four different diets
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Beyond the DNA sequence difference between humans and closely related apes, there are large differences in the environments that these species experience. One prominent example for this is diet. The human diet diverges from those of other primates in various aspects, such as having a high calorie and protein content, as well as being cooked. Here, we used a laboratory mouse model to identify gene expression differences related to dietary differences.

Publication Title

Human and chimpanzee gene expression differences replicated in mice fed different diets.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE13690
Gene expression profiling of murine MLL leukemias (whole BM)
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon

Description

The genetic programs that promote retention of self-renewing leukemia stem cells (LSCs) at the apex of cellular hierarchies in acute myeloid leukemia (AML) are not known. In a mouse model of human AML, LSCs exhibit variable frequencies that correlate with the initiating MLL oncogene and are maintained in a self-renewing state by a transcriptional sub-program more akin to that of embryonic stem cells (ESCs) than adult stem cells. The transcription/chromatin regulatory factors Myb, Hmgb3 and Cbx5 are critical components of the program and suffice for Hoxa/Meis-independent immortalization of myeloid progenitors when co-expressed, establishing the cooperative and essential role of an ESC-like LSC maintenance program ancillary to the leukemia initiating MLL/Hox/Meis program. Enriched expression of LSC maintenance and ESC-like program genes in normal myeloid progenitors and poor prognosis human malignancies links the frequency of aberrantly self-renewing progenitor-like cancer stem cells to prognosis in human cancer.

Publication Title

Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13693
Gene expression profiling of normal mouse myeloid cell populations
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Normal myeloid lineage cell populations (C57BL/6 mice, aged 4-10 weeks, male or female) with three distinct immunophenotypes were prospectively isolated and characterized. In preparation for FACS sorting, bone marrow cells were separated into c-kit+ and c-kit- fractions using an AutoMACS device. C-kit+ cells were further fractionated based on Gr1 and Mac1 expression, and absence of lineage antigen expression (B220, TER119, CD3, CD4, CD8 and IL7R), by cell sorting. C-kit+ Gr1+ Mac1lo/- and c-kit+ Gr1+ Mac1+ displayed cytologic features of undifferentiated hematopoietic cells or myeloblasts, whereas c-kit- Gr1+ Mac1+ cells were mature neutrophils.

Publication Title

Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13692
Expression profiling of MLL-AF10 myeloid leukemia cellular subsets
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Leukemia cells from mice with MLL-AF10 AML were fractionated into separate sub-populations on the basis of c-kit expression, which correlates with MLL LSC frequency (Somervaille and Cleary, 2006). The sorted AML sub-populations exhibited substantial differences in their frequencies of AML CFCs/LSCs (mean 14-fold) and morphologic features, consistent with a leukemia cell hierarchy with maturation through to terminally differentiated neutrophils.

Publication Title

Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE67415
Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon

Description

Ebf1 is a transcription factor with documented, and dose dependent, functions in both normal and malignant B-lymphocyte development. In order to understand more about the role of Ebf1 in malignant transformation, we have investigated the impact of reduced functional Ebf1 dose on early B-cell progenitors. Gene expression analysis in loss and gain of function analysis suggested that Ebf1 was involved in the regulation of genes of importance for DNA repair as well as cell survival. Investigation of the level of DNA damage in steady state as well as after induction of DNA damage by UV light supported that pro-B cells lacking one functional allele of Ebf1 display a reduced ability to repair DNA damage. This was correlated to a reduction in expression of Rad51 and combined analysis of published 4C and chromatin Immuno precipitation data suggested that this gene is a direct target for Ebf1. Even though the lack of one allele of Ebf1 did not result in any dramatic increase of tumor formation, we noted a dramatic increase in the formation of pro-B cell leukemia in mice carrying a combined heterozygote mutation in the Ebf1 and Pax5 genes. Even though the tumors were phenotypically similar and stable, we noted a large degree of molecular heterogeneity well in line with a mechanism involving impaired DNA repair. Our data support the idea that Ebf1 controls homologous DNA repair in a dose dependent manner and that this may explain the frequent involvement of Ebf1 in human leukemia

Publication Title

Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE27451
Functions of HDAC1 and HDAC2 in Schwann cells during postnatal
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

The aim of our study is to determine the functions of histone deacetylases (HDACs) 1 and 2 in Schwann cells during postnatal development of the peripheral nervous system (PNS). Schwann cells are the myelinating glial cells of the PNS. At birth, mouse sciatic nerves mature in 2 subsequent phases: 1/ big caliber axons get sorted into a 1 to 1 relationship with Schwann cells, 2/ Schwann cells build a myelin sheath around sorted axons. In mice where both HDAC1 & HDAC2 have been specifically knocked out in Schwann cells, both phases are impaired. HDACs are chromatin remodeling enzymes, they can thus alter gene expression directly. We want to identify which genes controlled by HDAC1 and HDAC2 in Schwann cells are necessary for the maturation of sciatic nerves. Because HDAC1 and HDAC2 can compensate for each other loss to some extend, we will first analyze changes of gene expression in HDAC1/HDAC2 double KO animals. We expect to gain critical insights into the molecular mechanisms controlling Schwann cell differentiation and myelination. This knowledge is of key importance for the success of regenerative medicine in peripheral neuropathies, nerve tumors, and transplantation paradigms in non-regenerative CNS lesions and in large PNS injuries.

Publication Title

HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE11528
Gene expression data from mouse postnatal brain development
  • organism-icon Mus spretus, Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

In development, timing is of the utmost importance, and the timing of various developmental processes are often changed during evolution.

Publication Title

Transcriptional neoteny in the human brain.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact