refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 34 results
Sort by

Filters

Technology

Platform

accession-icon GSE8503
mRNA expression analysis of undifferentiated Dicer -/- (27H10) embryonic stem cells after miRNA transfection
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

We have analyzed the transcript expression levels in Dicer knock-out embryonic stem (ES) cells 24 hours after transfection with either control siRNA agains Renilla luciferase or miRNA Mimics (Dharmacon) of mmu-miR-290 cluster members in order to identify primary targets of miR-290 cluster miRNAs.

Publication Title

MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE113503
Gene expression data from E14.5 Pogz-WT and Pogz-KO fetal livers.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Fetal and adult -globin gene expression is tightly regulated during human development. Fetal globin genes are transcriptionally silenced during embryogenesis through the process of hemoglobin switching. Efforts to understand the transcriptional mechanism(s) behind fetal globin silencing have led to novel strategies to derepress fetal globin expression in the adult, which could alleviate symptoms in hereditary b-globin disorders including sickle cell disease (SCD) and -thalassemia. We identified a novel zinc finger protein, pogo transposable element with zinc finger domain (Pogz), expressed in mouse and human hematopoietic stem and progenitor cells, which represses embryonic b-like globin gene expression in mice. Ablation of Pogz expression in adult hematopoietic cells in vivo results in persistence of embryonic b-like globin expression without significantly affecting erythroid development or mouse survival. Elevated embryonic -like globin expression correlates with reduced expression of Bcl11a, a known repressor of embryonic -like globin expression, in Pogz-/- fetal liver cells. Pogz binds to the Bcl11a promoter, and, to erythroid specific intragenic regulatory regions. Importantly, Pogz+/- mice develop normally, but show elevated embryonic b-like globin expression in peripheral blood cells, demonstrating that reducing Pogz levels results in persistence of embryonic b-like globin expression. Finally, knockdown of POGZ in primary human CD34+ hematopoietic stem and progenitor cell derived erythroblasts, reduces BCL11A expression and increases fetal hemoglobin expression. These findings are significant since new therapeutic targets and strategies are needed to treat the increasing global burden of b-globin disorders.

Publication Title

POGZ Is Required for Silencing Mouse Embryonic β-like Hemoglobin and Human Fetal Hemoglobin Expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34917
IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34892
IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors (Affymetrix).
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

While most blood lineages are assumed to mature through a single cellular and developmental route downstream of hematopoietic stem cells (HSCs), dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors (CMPs) differentiate into common dendritic cell progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that Interferon regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8-/- bone marrow demonstrated cell-intrinsic defects in the formation of CDPs and all splenic dendritic cell subsets. Irf8-/- CMPs and, unexpectedly, Irf8-/- ALPs produced more neutrophils in vivo than their wild type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context.

Publication Title

IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10273
Convergent molecular pathways that induce immunoglobulin light-chain recombination
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Productive rearrangement of the immunoglobulin heavy chain locus triggers a major developmental checkpoint that promotes limited clonal expansion of pre-B cells, culminating in cell cycle arrest and rearrangement of the kappa () or lambda () light-chain loci. B lineage cells lacking the related transcription factors IRF-4 and IRF-8 undergo a developmental arrest at the cycling pre-B cell stage and are blocked for light-chain recombination. Using Irf-4,8-/- pre-B cells we demonstrate that two pathways converge to synergistically drive light-chain rearrangement, a process that is not simply activated by cell cycle exit. One pathway is directly dependent on IRF-4, whose expression is elevated by pre-BCR signaling. IRF-4 targets the 3 and enhancers to increase locus accessibility and positions a kappa allele away from pericentromeric heterochromatin. The other pathway is triggered by attenuation of IL-7 signaling and results in activation of the intronic enhancer via binding of the transcription factor, E2A. Intriguingly, IRF-4 regulates the expression of CXCR4 and promotes the migration of pre-B cells in response to the chemokine CXCL12. We propose that IRF-4 coordinates the two pathways regulating light-chain recombination by positioning pre-B cells away from IL-7 expressing stromal cells.

Publication Title

Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15808
Global changes in processing of 3'-UTR characterize clinically distinct tumor types
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon

Description

We used a novel probe-level microarray analysis, revealing connections between mRNA processing and lymphoid neoplasia, in a mouse leukemia model. Characteristic differences in mRNA processing, primarily in the 3-untranslated region, distinguished histologically similar tumor subtypes with different survival characteristics. Gene sets with specific processing in each tumor subtype defined signatures useful for tumor subclassification, as demonstrated by internal cross-validation with up to 80% discrimination accuracy. A combination of mRNA expression and sequence analysis suggested that differences in isoform abundance likely arose from both alternative polyadenylation and differential degradation.

Publication Title

Global changes in processing of mRNA 3' untranslated regions characterize clinically distinct cancer subtypes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42346
Expression data from murine bone marrow erythroid progenitor cells at two early stages of development.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

This study was designed to define erythropoietin (EPO) regulated genes in murine bone marrow erythroid progenitor cells at two stages of development, designated E1, and E2. E1 cells correspond to CFUe- like progenitors, while E2 cells are proerythroblasts.

Publication Title

Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE2019
Microarray Based Comparison of three Amplification Methods For Nanogram Amounts of Total RNA
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

Two T7 based methods One round of Amplification (Affymetrix) and Two round of Amplification were compared to two Ribo-SPIA based systems, RiboSPIA and pico Ribo SPIA systems. Data for Pico-RiboSPIA are listed here.

Publication Title

Microarray-based comparison of three amplification methods for nanogram amounts of total RNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14997
Expression data from young and adult mice after over expression of self MHC class l protein in skeletal muscle.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Over expression of MHC Class l protein in skeletal muscle causes myositis. Phenotype after expression in young mice is more severe.

Publication Title

Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE13364
Expression data from BWF1 mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Microarray analysis was performed on BWF1 mice spleenocyte cells in control and pCONS treated mice.

Publication Title

Distinct gene signature revealed in white blood cells, CD4(+) and CD8(+) T cells in (NZBx NZW) F1 lupus mice after tolerization with anti-DNA Ig peptide.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact