refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 21 results
Sort by

Filters

Technology

Platform

accession-icon GSE27630
The transcription factor Otx2 regulates choroid plexus development and function
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

The choroid plexuses (ChPs) are the main regulators of cerebrospinal fluid (CSF) composition and thereby also control the composition of a principal source of signaling molecules that is in direct contact with neural stem cells in the developing brain. The regulators of ChP development mediating the acquisition of a fate that differs from the neighboring neuroepithelial cells are poorly understood. Here, we demonstrate in mice a crucial role for the transcription factor Otx2 in the development and maintenance of ChP cells. Deletion of Otx2 by the Otx2-CreERT2 driver line at E9 resulted in a lack of all ChPs, whereas deletion by the Gdf7-Cre driver line affected predominately the hindbrain ChP, which was reduced in size, primarily owing to an increase in apoptosis upon Otx2 deletion. Strikingly, Otx2 was still required for the maintenance of hindbrain ChP cells at later stages when Otx2 deletion was induced at E15, demonstrating a central role of Otx2 in ChP development and maintenance. Moreover, the predominant defects in the hindbrain ChP mediated by Gdf7-Cre deletion of Otx2 revealed its key role in regulating early CSF composition, which was altered in protein content, including the levels of Wnt4 and the Wnt modulator Tgm2. Accordingly, proliferation and Wnt signaling levels were increased in the distant cerebral cortex, suggesting a role of the hindbrain ChP in regulating CSF composition, including key signaling molecules. Thus, Otx2 acts as a master regulator of ChP development, thereby influencing one of the principal sources of signaling in the developing brain, the CSF.

Publication Title

The transcription factor Otx2 regulates choroid plexus development and function.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE49462
Mouse hybrid sterility X2 (Hstx2) controls meiotic asynapsis of heterosubspecific homologs and probes into the dominance theory of Haldane's rule.
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16104
IL-1b responses in receptor-reconstituted AcP-deficient neurons
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

The purpose was to determine AcP- and AcPb-dependent gene responses to IL-1 by virally-reconstituting AcP-deficient mouse embryonic cortical neurons with CD25 (control), full length AcP, AcPb or the combination of both. A control population was transduced with a CD25-expressing virus. Half the samples were stimulated with IL-1-beta for four hours, RNA was analyzed by microarray.

Publication Title

A central nervous system-restricted isoform of the interleukin-1 receptor accessory protein modulates neuronal responses to interleukin-1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32529
Mouse ischemic tolerance genomic analysis of the brain and blood.
  • organism-icon Mus musculus
  • sample-icon 218 Downloadable Samples
  • Technology Badge Icon

Description

Ischemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand, lipopolysaccharide (LPS) or the TLR9 ligand, unmethylated CpG ODNs prior to transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain and blood genomic profiles in response to preconditioning with these TLR ligands and to preconditioning via exposure to brief ischemia.

Publication Title

Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE15452
Expression data from lung of mice bearing mutations of FGFR3 and FGFR4
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression profiling of newborn lung tissue revealed few changes in compound FGFR3/FGFR4 deficient mice, consistent with their normal lung morphology at birth, suggesting the sequence of events leading to the phenotype initiates after birth in this model.

Publication Title

Fibroblast growth factor receptors control epithelial-mesenchymal interactions necessary for alveolar elastogenesis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE44563
Expression data from C2C12 myotubes infected with RML prions
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Prion infection in animals results in neurodegeneration and eventually death. To examine the cellular impact of Prion disease, we profiled non-proliferative fully differentiated C2C12 cells, which can replicate prions to high levels. Results suggest that accumulation of high levels of PrPSc in C2C12 myotubes does not cause any overt cellular dysfunction or molecular pathology.

Publication Title

Infectious prions accumulate to high levels in non proliferative C2C12 myotubes.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE36688
Expression data from sorted interfollicular basal cells (alpha6 integrin-high/CD34-neg) from K14CREER and InvCREER/RosaYFP induced mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

The skin interfollicular epidermis (IFE) is the first barrier against the external environment and its maintenance is critical for survival. Two seemingly opposite theories have been proposed to explain IFE homeostasis. One posits that IFE is maintained by a long-lived slow-cycling stem cell (SC) population that give rise to short-lived transit-amplifying (TA) cell progeny, while the other suggests that homeostasis is achieved by a single committed progenitor (CP) that balances stochastic fate. Here, we probed the cellular heterogeneity within the IFE using two different inducible CREER targeting IFE progenitors. Quantitative analysis of clonal fate data and proliferation dynamics demonstrate the existence of two distinct proliferative cell compartments composed of slow-cycling SC and CP, both of which undergo population asymmetric self-renewal. However, following wounding, only SCs contribute substantially to the repair and long-term regeneration of the tissue, while CP cells make a minimal and transient contribution.

Publication Title

Distinct contribution of stem and progenitor cells to epidermal maintenance.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19169
Jumonji modulates Polycomb activity and self-renewal versus differentiation of stem cells
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14415
Gene expression profiling of natural and induced regulatory T cells
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon

Description

The gene expression profile of peripheral Foxp3+ natural regulatory T cells isolated from Foxp3/EGFP bicistronic mice was compared to that of in vitro-induced regulatory T cells and to CD4+ conventional (Foxp3-) T cells. The role of the regulatory T cell transcription factor Foxp3 in shaping the transcriptosomes of natural and induced regulatory T cells was analyzed using mice expressing a mutant FOXP3-EGFP fusion protein (Foxp3deltaEGFP).

Publication Title

A central role for induced regulatory T cells in tolerance induction in experimental colitis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19165
Microarray profiling analysis in Jmj-Fl/Fl and Jmj-null ESCs.
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon

Description

We used microarrays to detail the role of JMJ in ES cell function.

Publication Title

Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact