refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE48790
Expression data from GTF2i mutated ES cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Data present the expression analysis of different mouse ES cell line with altered expression of GTF2I.

Publication Title

TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25639
A mouse model of deregulation of the malt1 oncogene recapitulates the pathogenesis of human malt lymphoma
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE38257
A Novel Tumor suppressor network in squamous malignancies
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

The specific ablation of Rb1 gene in stratified epithelia (RbF/F;K14cre) promotes proliferation and altered differentiation but is insufficient to produce spontaneous tumors. The pRb relative, p107, compensates some of the functions of pRb in these tissues, however RbF/F;K14cre;p107-/- mice die postnatally. Acute pRb loss in stratified epithelia, using an inducible mouse model (RbF/F;K14creERTM), shows that p107 exerts specific tumor suppressor functions in its absence. After simultaneous absence of pRb and p107, p53 transcriptional function is impaired and Pten expression is reduced. All mutant mice develop spontaneous squamous tumors carcinomas rapidly. Gene expression analysis of mouse tumors, besides supporting the impaired p53 function and the susceptibility to Akt/mTOR inhibitors, also revealed significant overlap with human squamous carcinomas. Thus, RbF/F;K14creERTM;p107-/- may constitute a new mouse model for these malignancies. Collectively, these data demonstrate the existence of a previously unreported functional connection between pRb, Pten and p53 tumor suppressors, through p107, of a particular relevance in squamous tumor development.

Publication Title

A novel tumor suppressor network in squamous malignancies.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48522
Akt signalling leads to stem cell activation and promotes tumour development in epidermis.
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

A permantly active form of the oncogene Akt was expressed in the keratinocytes of the basal proliferative layer of the epidermis. Stem cells of the hair follicle expressing the cell surface marker CD34 were isolated. RNA form the CD34(+) and CD34(-) keratinocytes was extracted and and hybridized to Mouse Genome 430 2.0 Affymetrix arrays.

Publication Title

Akt signaling leads to stem cell activation and promotes tumor development in epidermis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11990
Gene expression profiling of mouse p53-deficient epidermal carcinoma defines molecular determinants of human cancer malignancy (training dataset)
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

The epidermal specific ablation of Trp53 gene leads to the spontaneous development of aggressive tumors in mice through a process that is accelerated by the simultaneous ablation of Rb gene. Since alterations of p53-dependent pathway are common hallmarks of aggressive, poor prognostic human cancers, these mouse models can recapitulate the molecular features of some of these human malignancies. To evaluate this possibility, gene expression microarray analysis was performed in mouse samples. The mouse tumors display increased expression of cell cycle and chromosomal instability associated genes. Remarkably, they are also enriched in human embryonic stem cell gene signatures, a characteristic feature of human aggressive tumors. Using cross-species comparison and meta-analytical approaches, we also observed that spontaneous mouse tumors display robust similarities with gene expression profiles of human tumors bearing mutated TP53, or displaying poor prognostic outcome, from multiple body tissues. We have obtained a 20-gene signature whose genes are overexpressed in mouse tumors and can identify human tumors with poor outcome from breast cancer, astrocytoma and multiple myeloma. This signature was consistently overexpressed in additional mouse tumors using microarray analysis. Two of the genes of this signature, AURKA and UBE2C, were validated in human breast and cervical cancer as potential biomarkers of malignancy. Our analyses demonstrate that these mouse models are promising preclinical tools aimed to search for malignancy biomarkers and to test targeted therapies of prospective use in human aggressive tumors and/or with p53 mutation or inactivation.

Publication Title

Gene expression profiling of mouse p53-deficient epidermal carcinoma defines molecular determinants of human cancer malignancy.

Sample Metadata Fields

Age, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact