refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE30187
Expression data in the mouse brain following the glucocorticoid receptor overexpression in the forebrain (GRov) during different periods in development
  • organism-icon Mus musculus
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon

Description

The glucocorticoid receptor overexpression in early life is sufficient to alter gene expression patterns for the rest of the animal's life.

Publication Title

Early-life forebrain glucocorticoid receptor overexpression increases anxiety behavior and cocaine sensitization.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE12454
The SWI/SNF protein ATRX co-regulates pseudoautosomal genes that have translocated to autosomes in the mouse genome
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon

Description

Pseudoautosomal regions (PAR1 and PAR2) in eutherians retain homologous regions between the X and Y chromosomes that play a critical role in the obligatory X-Y crossover during male meiosis. Genes that reside in the PAR1 are exceptional in that they are rich in repetitive sequences and undergo a very high rate of recombination. Remarkably, murine PAR1 homologs have translocated to various autosomes, reflecting the complex recombination history during the evolution of the mammalian X chromosome. We now report that the SNF2-type chromatin remodeling protein ATRX controls the expression of eutherians ancestral PAR1 genes that have translocated to autosomes in the mouse. In addition, we have identified two potentially novel mouse PAR1 orthologs. We propose that the ancestral PAR1 genes share a common epigenetic environment that allows ATRX to control their expression.

Publication Title

The SWI/SNF protein ATRX co-regulates pseudoautosomal genes that have translocated to autosomes in the mouse genome.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE18135
Gene Expression Profile of Androgen Modulated Genes in the Murine Fetal Developing Lung
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Accumulating evidences suggest that sex affects lung development. During the fetal period, male lung maturation is delayed compared with female and surfactant production appears earlier in female than in male fetal lungs.

Publication Title

Gene expression profile of androgen modulated genes in the murine fetal developing lung.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE60615
miRNAs in Treg-derived Exosomes
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Foxp3+ regulatory T (Treg) cells prevent inflammatory disease but the mechanistic basis of suppression is not understood completely . Gene silencing by RNA interference can act in a cell-autonomous and non-cell-autonomous manner, providing mechanisms of inter-cellular regulation. Here, we demonstrate that non-cell-autonomous gene silencing, mediated by miRNA-containing exosomes, is a mechanism employed by Treg cells to suppress T cell-mediated disease. Treg cells transferred microRNAs (miRNA) to various immune cells, including T helper 1 (Th1) cells, suppressing Th1 cell proliferation and cytokine secretion. Use of Dicer-deficient or Rab27a and Rab27b double-deficient Treg cells to disrupt miRNA-biogenesis or the exosomal pathway, respectively, established a requirement for miRNAs and exosomes for Treg cell-mediated suppression. Transcriptional analysis and miRNA inhibitor studies showed that exosome-mediated transfer of Let-7d from Treg cell to Th1 cells contributed to suppression and prevention of systemic disease. These studies reveal a mechanism of Treg cell-mediated suppression mediated by miRNA-containing exosomes.

Publication Title

MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11723
Role of Notch signaling on hematopoietic stem cell differentiation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Although Notch signaling has been clearly implicated in lymphoid differentiation, its role in myeloid lineages differentiation is unclear.

Publication Title

Notch signaling specifies megakaryocyte development from hematopoietic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact