refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 163 results
Sort by

Filters

Technology

Platform

accession-icon GSE10964
Virus-Induced Airway Disease in Mice (C57BL/6J, d21/d49)
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of gene expression in lungs of C57BL/6J mice that develop chronic airway disease phenotypes after a single Sendai virus infection, compared with mice treated with UV-inactivated virus.

Publication Title

Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

Sample Metadata Fields

Sex, Time

View Samples
accession-icon GSE28736
BATF knockout B cells
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

compare wild type and Batf-/- B cells activated for 0 1 or 2 days in vitro.

Publication Title

The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34729
Gene expression changes induced by overexpression of EVI1 in Lin- hematopoietic cells [Lin]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.

Publication Title

Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61299
Sharpin controls differentiation and cytokine production of mesenchymal bone marrow cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

The cytosolic protein Sharpin is as a component of the linear ubiquitin chain assembly complex (LUBAC), which regulates NF-B signaling in response to specific ligands. Its inactivating mutation in Cpdm (chronic proliferative dermatitis mutation) mice causes multi-organ inflammation, yet this phenotype is not transferable into wildtype mice by hematopoietic stem cell transfer. Recent evidence demonstrated that Cpdm mice additionally display low bone mass, but the cellular and molecular causes of this phenotype remained to be established. Here we have applied non-decalcified histology together with cellular and dynamic histomorphometry to perform a thorough skeletal phenotyping of Cpdm mice. We show that Cpdm mice display trabecular and cortical osteopenia, solely explained by impaired bone formation, whereas osteoclastogenesis is unaffected. We additionally found that Cpdm mice display a severe disturbance of articular cartilage integrity in the absence of joint inflammation, supporting the concept that Sharpin-deficiency affects mesenchymal cell differentiation. Consistently, Cpdm mesenchymal cells displayed reduced osteogenic capacitiy ex vivo, yet this defect was not associated with impaired NF-B signaling. A molecular comparison of wildtype and Cpdm bone marrow cell populations further revealed that Cpdm mesenchymal cells produce higher levels of Cxcl5 and lower levels of IL1ra. Collectively, our data demonstrate that skeletal defects of Cpdm mice are not caused by chronic inflammation, but that Sharpin is as a critical regulator of mesenchymal cell differentiation and gene expression. They additionally provide an alternative molecular explanation for the inflammatory phenotype of Cpdm mice and the absence of disease transfer by hematopoetic stem cell transplantation.

Publication Title

Sharpin Controls Osteogenic Differentiation of Mesenchymal Bone Marrow Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30868
Parthenogenetic stem cells for tissue-engineered heart repair
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.

Publication Title

Parthenogenetic stem cells for tissue-engineered heart repair.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27159
Expression profiling of the murine neural crest precursor cell line, JoMa1
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

JoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.

Publication Title

MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE13387
Comparative analysis of Drd1+ Medium Spiny Neurons, Drd2+ Medium Spiny Neurons, Motor Neurons, and Purkinje Neurons
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.

Publication Title

A translational profiling approach for the molecular characterization of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13385
Comparative analysis of Drd1+ Medium Spiny Neurons, Drd2+ Medium Spiny Neurons and whole brain
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.

Publication Title

A translational profiling approach for the molecular characterization of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13384
Comparative analysis of Drd1+ Medium Spiny Neurons and Drd2+ Medium Spiny Neurons
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations.

Publication Title

A translational profiling approach for the molecular characterization of CNS cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26025
Sex-specific effects of prenatal stress in 5-Htt deficient mice: towards molecular mechanisms of gene x environment interactions
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

prenatal stress response, genetic modification

Publication Title

Differential effects of prenatal stress in 5-Htt deficient mice: towards molecular mechanisms of gene × environment interactions.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact