refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 163 results
Sort by

Filters

Technology

Platform

accession-icon GSE13908
Gene expression analysis in intestinal epithelial cells of germ-free versus wildtype mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression was analyzed in intestinal epithelial cells of germ-free and wildtype mice.

Publication Title

A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35766
Identification of the cortical neurons that mediate antidepressant responses
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34731
Expression in LT-HSC after in vitro culture in mSCF, mTpo, mFlt3L, hIGFBP2 and Angptl5.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Mouse LT-HSC were sorted and cultured in mScf, mTpo, mFlt3L, hIGFBP2 and Angptl5 for 2 days. These expression values were related to insertions of gamma-retroviral, lentiviral or alpharetroviral vectors carrying GFP which were retrieved after serial murine BM transplantation. The relation between gene expression in the cells responsible for long-term hematopoiesis and location of vector integration was investigated.

Publication Title

Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18914
Prepubertal Human Spermatogonia and Mouse Gonocytes Share Conserved Gene Expression of Germline Stem Cell Regulatory
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Full title: Prepubertal Human Spermatogonia and Mouse Gonocytes Share Conserved Gene Expression of Germline Stem Cell Regulatory Molecules

Publication Title

Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules.

Sample Metadata Fields

Age

View Samples
accession-icon GSE16381
Cytoprotective Nrf2 pathway is induced in chronically Txnrd1-deficient hepatocytes
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins.

Publication Title

Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30626
Candidate pathways for promoting differentiation and quiescence of oligodendrocyte progenitor-like cells in glioblastoma
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon

Description

The mature CNS contains PDGFRA+ oligodendrocyte progenitor cells (OPC) which may remain quiescent, proliferate, or differentiate into oligodendrocytes. In human gliomas, rapidly proliferating Olig2+ cells resembling OPCs are frequently observed. We sought to identify, in vivo, candidate pathways uniquely required for OPC differentiation or quiescence. Using the bacTRAP methodology, we generated and analyzed mouse lines for translational profiling the major cells types (including OPCs), in the normal mouse brain. We then profiled oligodendoglial (Olig2+) cells from a mouse model of Pdgf-driven glioma. This analysis confirmed that Olig2+ tumor cells are most similar to OPCs, yet, it identified differences in key progenitor genes - candidates for promotion of differentiation or quiescence.

Publication Title

Candidate pathways for promoting differentiation or quiescence of oligodendrocyte progenitor-like cells in glioma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24295
Gene expression in epithelial and non-epithelial cells of renal origin
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We aimed to define epithelial-specific genes in the kidney. In the developing mouse kidney at E12.5 epithelial cells are restricted to the ureteric bud, while mesenchymal cells surrounding the ureteric bud are non-epithelial. The mouse renal epithelial cell line mIMCD-3 was used to represent kidney epithelia in vitro. Gene expression was analyzed using Affymetrix microarrays in ureteric bud stalks, ureteric bud tips, and mIMCD-3 cells and compared to metanephric mesenchyme.

Publication Title

The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE19778
The soluble intracellular domain of megalin does not affect renal proximal tubular function in vivo
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The endocytic receptor megalin constitutes the main pathway for clearance of plasma proteins from the glomerular filtrate in the proximal tubules. However, little is know about the mechanisms that control receptor activity. A widely discussed hypothesis states that the intracellular domain (ICD) of megalin, released upon ligand binding, acts as a transcription regulator to suppress receptor expression - a mechanism proposed to safeguard the proximal tubules from protein overload. Here, we have put this hypothesis to the test by generating a mouse model co-expressing the soluble ICD and the full-length receptor. Despite pronounced expression in the proximal tubules, the ICD failed to exert any effects on renal proximal tubular function such as megalin expression, protein retrieval, or renal gene transcription. Thus, our data argue that the ICD does not play a role in regulation of megalin activity in vivo in the proximal tubules.

Publication Title

The soluble intracellular domain of megalin does not affect renal proximal tubular function in vivo.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE84309
Gene expression profiles of KDM5A-/- MEFs with wild-type KDM5A or KDM5A-H483A mutant
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression profiles of Immortalized KDM5A-/- MEFs with re-introduction of wild-type KDM5A or KDM5A-H483A mutant.

Publication Title

The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13044
Gene expression profiling in the lung and liver of low and high dose Perfluorooctanoic Acid exposed mouse fetuses
  • organism-icon Mus musculus
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon

Description

Exposure to PFOA during gestation altered the expression of genes related to fatty acid catabolism in both the fetal liver and lung. In the fetal liver, the effects of PFOA were robust and also included genes associated with lipid transport, ketogenesis, glucose metabolism, lipoprotein metabolism, cholesterol biosynthesis, steroid metabolism, bile acid biosynthesis, phospholipid metabolism, retinol metabolism, proteosome activation, and inflammation. These changes are consistent with activation of PPAR alpha. Non-PPAR alpha related changes were suggested as well.

Publication Title

Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact