refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 163 results
Sort by

Filters

Technology

Platform

accession-icon GSE15129
Coenzyme Q10-dependent gene expression in SAMP1 mice tissues
  • organism-icon Mus musculus
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon

Description

Our present study reveals significant decelerating effects on senescence processes in middle-aged SAMP1 mice supplemented for 6 or 14 months with the reduced form (QH2, 500 mg/ kg BW/ day) of coenzyme Q10 (CoQ10). To unravel molecular mechanisms of these CoQ10 effects, a genome-wide transcript profiling in liver, heart, brain and kidney of SAMP1 mice supplemented with the reduced (QH2) or oxidized form of CoQ10 (Q10) was performed. Liver seems to be the main target tissue of CoQ10 intervention, followed by kidney, heart and brain. Stringent evaluation of the resulting data revealed that QH2 has a stronger impact on gene expression than Q10, which was primarily due to differences in the bioavailability. Indeed, we found that QH2 supplementation was more effective than Q10 to increase levels of CoQ10 in the liver of SAMP1 mice (54.92-fold and 30.36-fold, respectively). To identify functional and regulatory connections of the top 50 (p < 0.05) up- and down-regulated QH2-sensitive transcripts in liver (fold changes ranging from 21.24 to -6.12), text mining analysis (Genomatix BiblioSphere, GFG level B3) was used. Hereby, we identified 11 QH2-sensitive genes which are regulated by PPAR- and are primarily involved in cholesterol synthesis (e.g. HMGCS1, HMGCL, HMGCR), fat assimilation (FABP5), lipoprotein metabolism (PLTP) and inflammation (STAT-1). Thus, we provide evidence that QH2 is involved in the reduction of fat and cholesterol synthesis via modulation of the PPAR- signalling pathway. These data may explain, at least in part, the observed effects on decelerated age-dependent degeneration processes in QH2-supplemented SAMP1 mice.

Publication Title

Supplementation with the reduced form of Coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-alpha gene expression signature in SAMP1 mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE24789
Expression data from mouse ovarian surface epithelium cells at different stages of malignancy
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Ovarian cancer is one of the most deadly cancers accounting for only 3% of diagnosed cancers, but is the fifth leading cause of cancer deaths among woman; however, the progression of ovarian cancer is poorly understood. To study and further understand the early events that lead to epithelial derived ovarian cancer, we previously developed a cell model of progressive ovarian cancer. Mouse ovarian surface epithelial (MOSE) cells have undergone spontaneous transformation in cell culture and represent pre-neoplastic, non-tumorigenic to an aggressive malignant phenotype.

Publication Title

Changes in gene expression and cellular architecture in an ovarian cancer progression model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26025
Sex-specific effects of prenatal stress in 5-Htt deficient mice: towards molecular mechanisms of gene x environment interactions
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

prenatal stress response, genetic modification

Publication Title

Differential effects of prenatal stress in 5-Htt deficient mice: towards molecular mechanisms of gene × environment interactions.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE27159
Expression profiling of the murine neural crest precursor cell line, JoMa1
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

JoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.

Publication Title

MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE34731
Expression in LT-HSC after in vitro culture in mSCF, mTpo, mFlt3L, hIGFBP2 and Angptl5.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Mouse LT-HSC were sorted and cultured in mScf, mTpo, mFlt3L, hIGFBP2 and Angptl5 for 2 days. These expression values were related to insertions of gamma-retroviral, lentiviral or alpharetroviral vectors carrying GFP which were retrieved after serial murine BM transplantation. The relation between gene expression in the cells responsible for long-term hematopoiesis and location of vector integration was investigated.

Publication Title

Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30868
Parthenogenetic stem cells for tissue-engineered heart repair
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.

Publication Title

Parthenogenetic stem cells for tissue-engineered heart repair.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34729
Gene expression changes induced by overexpression of EVI1 in Lin- hematopoietic cells [Lin]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.

Publication Title

Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36416
Protein kinase C-beta dependent activation of NF-kB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia in B-cells in vivo.
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE36415
Effect of NF-kappaB activation in bone marrow stromal cells co-cultured with CLL cells
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

Tumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here we describe a novel survival signaling pathway activated in stromal cells by contact to B-cells from chronic lymphocytic leukemia (CLL) patients. The expression of PKC-II and the subsequent activation of NF-B in bone marrow stromal cells is a prerequisite to support the survival of malignant B-cells. PKC- knockout mice are insusceptible to CLL-transplantations, underscoring the in vivo significance of the PKC-II- NF-B signaling pathway in the tumor microenvironment. Upregulated stromal PKC-II in biopsies from CLL, breast- and pancreatic- cancer patients suggest that this pathway may commonly be activated in a variety of malignancies.

Publication Title

Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36414
Gene expression changes induced in the stromal cell line EL08-1D2 by co-culture with leukemic B cells (CLL)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Tumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here we describe a novel survival signaling pathway activated in stromal cells by contact to B-cells from chronic lymphocytic leukemia (CLL) patients. The expression of PKC-II and the subsequent activation of NF-B in bone marrow stromal cells is a prerequisite to support the survival of malignant B-cells. PKC- knockout mice are insusceptible to CLL-transplantations, underscoring the in vivo significance of the PKC-II- NF-B signaling pathway in the tumor microenvironment. Upregulated stromal PKC-II in biopsies from CLL, breast- and pancreatic- cancer patients suggest that this pathway may commonly be activated in a variety of malignancies.

Publication Title

Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact