refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 163 results
Sort by

Filters

Technology

Platform

accession-icon GSE10806
Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

Reprogramming of somatic cells is a valuable tool to understand the mechanisms of regaining pluripotency and further opens up the possibility of generating patient-specific pluripotent stem cells. Reprogramming of mouse and human somatic cells into pluripotent stem cells, designated as induced pluripotent stem (iPS) cells, has been possible with the expression of the transcription factor quartet Oct4 (also known as Pou5f1), Sox2, c-Myc, and Klf4. Considering that ectopic expression of c-Myc causes tumourigenicity in offspring and retroviruses themselves can cause insertional mutagenesis, the generation of iPS cells with a minimal number of factors may hasten the clinical application of this approach. Here, we show that adult mouse neural stem cells express higher endogenous levels of Sox2 and c-Myc than embryonic stem cells, and that exogenous Oct4 together with either Klf4 or c-Myc are sufficient to generate iPS cells from neural stem cells. These two-factor (2F) iPS cells are similar to embryonic stem cells at the molecular level, contribute to development of the germ line, and form chimeras. We propose that, in inducing pluripotency, the number of reprogramming factors can be reduced when using somatic cells that endogenously express appropriate levels of complementing factors.

Publication Title

Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30868
Parthenogenetic stem cells for tissue-engineered heart repair
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.

Publication Title

Parthenogenetic stem cells for tissue-engineered heart repair.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11274
Induction of Pluripotency in Adult Unipotent Germline Stem Cells
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

Mouse and human stem cells with features similar to those of embryonic stem cells have been derived from testicular cells. Although pluripotent stem cells have been obtained from defined germline stem cells (GSCs) of mouse neonatal testis, only multipotent stem cells have been obtained so far from defined cells of mouse adult testis. In this study we describe a robust and reproducible protocol for obtaining germline-derived pluripotent stem (gPS) cells from adult unipotent GSCs. Pluripotency of gPS cells was confirmed by in vitro and in vivo differentiation, including germ cell contribution and transmission. As determined by clonal analyses, gPS cells indeed originate from unipotent GSCs. We propose that the conversion process requires a GSC culture microenvironment that depends on the initial number of plated GSCs and the length of culture time.

Publication Title

Induction of pluripotency in adult unipotent germline stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12499
Oct4-Induced Pluripotency in Adult Neural Stem Cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. These one-factor induced pluripotent stem (1F iPS) cells are similar to embryonic stem cells in vitro and in vivo. Not only can these cells be efficiently differentiated into NSCs, cardiomyocytes and germ cells in vitro, but they are also capable of teratoma formation and germline transmission in vivo. Our results demonstrate that Oct4 is required and sufficient to directly reprogram NSCs to pluripotency.

Publication Title

Oct4-induced pluripotency in adult neural stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27159
Expression profiling of the murine neural crest precursor cell line, JoMa1
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

JoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.

Publication Title

MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE34729
Gene expression changes induced by overexpression of EVI1 in Lin- hematopoietic cells [Lin]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.

Publication Title

Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26025
Sex-specific effects of prenatal stress in 5-Htt deficient mice: towards molecular mechanisms of gene x environment interactions
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

prenatal stress response, genetic modification

Publication Title

Differential effects of prenatal stress in 5-Htt deficient mice: towards molecular mechanisms of gene × environment interactions.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE24295
Gene expression in epithelial and non-epithelial cells of renal origin
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We aimed to define epithelial-specific genes in the kidney. In the developing mouse kidney at E12.5 epithelial cells are restricted to the ureteric bud, while mesenchymal cells surrounding the ureteric bud are non-epithelial. The mouse renal epithelial cell line mIMCD-3 was used to represent kidney epithelia in vitro. Gene expression was analyzed using Affymetrix microarrays in ureteric bud stalks, ureteric bud tips, and mIMCD-3 cells and compared to metanephric mesenchyme.

Publication Title

The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE72149
Autism-like syndrome is induced in mice by pharmacological suppression of BET proteins
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon

Description

Studies investigating the causes of autism spectrum disorder (ASD) point to genetic as well as epigenetic mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here we identify the bromodomain and extra-terminal domain containing transcriptional regulators (BETs) as epigenetic drivers of an ASD-like disorder in mice. We found that the pharmacological suppression of the BET proteins by a novel, highly selective and brain-permeable inhibitor, I-BET858, leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome in mice. Many of the I-BET858 affected genes have been linked to ASD in humans thus suggesting the key role of the BET-controlled gene network in ASD. Our studies also suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.

Publication Title

Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21444
Expression profiling of murine DCIS and invasive ductal breast carcinoma
  • organism-icon Mus musculus
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon

Description

Murine healthy tissue samples, DCIS and invasive mammary tumors were analyzed in order to identify marker genes which show enhanced expresssion in DCIS and invasive ductal carcinomas.

Publication Title

Identification of early molecular markers for breast cancer.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact