refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon GSE9857
Striatal gene expression data from 12 weeks-old R6/2 mice and control mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9803
Striatal gene expression data from 12 weeks-old R6/2 mice and control mice (set 1)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2(Q150/Q150), 18-month Hdh(Q92/Q92) and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9804
Striatal gene expression data from 12 weeks-old R6/2 mice and control mice (set 2)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2(Q150/Q150), 18-month Hdh(Q92/Q92) and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10202
Striatal gene expression data from 22-month-old CHL2 mice and control mice.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Achieving a mechanistic understanding of disease and initiating preclinical therapeutic trials necessitate the study of huntingtin toxicity and its remedy in model systems. To allow the engagement of appropriate experimental paradigms, Huntingtons disease (HD) models need to be validated in terms of how they recapitulate a particular aspect of human disease. In order to examine transcriptome-related effects of mutant huntingtin, we compared striatal mRNA profiles from seven genetic mouse models of disease to that of postmortem human HD caudate using microarray analysis. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in models of HD took longer to appear, 15-month and 22-month CHL2Q150/Q150, 18-month HdhQ92/Q92 and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. When the affected genes were compared across models, a robust concordance was observed. Importantly, changes concordant across multiple lines mice were also in excellent agreement with the mRNA changes seen in human HD caudate. Although it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared to those caused by expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. There was, however, an overall concordance between transcriptomic signature and disease stage. We thus conclude that the transcriptional changes of HD can be modelled in several available lines of transgenic mice, comprising lines expressing both N-terminal and full-length mutant huntingtin proteins. The combined analysis of mouse and human HD transcriptomes provides an important chronology of mutant huntingtin's gene expression effects.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE42346
Expression data from murine bone marrow erythroid progenitor cells at two early stages of development.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

This study was designed to define erythropoietin (EPO) regulated genes in murine bone marrow erythroid progenitor cells at two stages of development, designated E1, and E2. E1 cells correspond to CFUe- like progenitors, while E2 cells are proerythroblasts.

Publication Title

Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE34917
IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34892
IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors (Affymetrix).
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

While most blood lineages are assumed to mature through a single cellular and developmental route downstream of hematopoietic stem cells (HSCs), dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors (CMPs) differentiate into common dendritic cell progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that Interferon regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8-/- bone marrow demonstrated cell-intrinsic defects in the formation of CDPs and all splenic dendritic cell subsets. Irf8-/- CMPs and, unexpectedly, Irf8-/- ALPs produced more neutrophils in vivo than their wild type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context.

Publication Title

IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37030
Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10727
Expression data from dermis of epithelial activated beta-catenin mutant mouse embryo
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

-catenin signaling is required for hair follicle development, but it is unknown whether it is sufficient to activate expression of hair follicle genes in embryonic skin. To address this we profiled gene expression in dermis from E15.5 KRT14-Cre Ctnnb1(Ex3)fl/+ embryos carrying an activating mutation in epithelial beta-catenin, and control littermate embryos.

Publication Title

Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10728
Expression data from epidermis of epithelial activated beta-catenin mutant mouse embryo
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

-catenin signaling is required for hair follicle development, but it is unknown whether it is sufficient to activate expression of hair follicle genes in embryonic skin. To address this we profiled gene expression in epidermis from E15.5 KRT14-Cre Ctnnb1(Ex3)fl/+ embryos carrying an activating mutation in epithelial beta-catenin, and control littermate embryos.

Publication Title

Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact