refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE26390
Fibroblast-specific focal adhesion kinase links mechanical force to fibrosis via chemokine-mediated inflammatory pathways
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Hypertrophic scar (HTS) formation is characterized by exuberant fibroproliferation for reasons that remain poorly understood1. One important but often overlooked component of wound repair is mechanical force, which regulates reciprocal cell-matrix interactions through focal adhesion components including focal adhesion kinase (FAK)1,2. Here we report that FAK is activated following cutaneous injury and that this activation is potentiated by mechanical loading. Transgenic mice lacking fibroblast-specific FAK exhibit significantly less fibrosis in a preclinical model of HTS formation. Inflammatory pathways involving monocyte chemoattractant protein-1 (MCP-1), a chemokine highly implicated in human skin fibrosis3, are triggered following FAK activation, mechanistically linking physical force to fibrosis. Further, small molecule inhibition of FAK effectively abrogates fibroproliferative mechanisms in human cells and significantly reduces scar formation in vivo. Collectively, these findings establish a molecular basis for HTS formation based on the mechanical activation of fibroblast-specific FAK and demonstrate the therapeutic potential of targeted mechanomodulatory strategies.

Publication Title

Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE14769
Time course of bone marrow-derived macrophages simulated with LPS
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

The innate immune system is a two-edged sword; it is absolutely required for host defense against infection, but if left uncontrolled can trigger a plethora of inflammatory diseases. Here we used systems biology approaches to predict and validate a gene regulatory network involving a dynamic interplay between the transcription factors NF-B, C/EBP, and ATF3 that controls inflammatory responses. We mathematically modeled transcriptional regulation of Il6 and Cebpd genes and experimentally validated the prediction that the combination of an initiator (NF-B), an amplifier (C/EBP) and an attenuator (ATF3) forms a regulatory circuit that discriminates between transient and persistent Toll-like receptor 4-induced signals. Our results suggest a mechanism that enables the innate immune system to detect the duration of infection and to respond appropriately.

Publication Title

Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE69688
Gene expression data from murine myeloid leukemia genomes induced by Sleeping Beauty transposon mutagenesis
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon

Description

Transcriptome analysis of mRNA samples from a cohort of mice with histopathologically diagnosed Undifferentiated Myeloid Leukemia.

Publication Title

Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE34839
Pten loss and RAS/MAPK activation cooperate to promote EMT and prostate cancer metastasis initiated from stem/progenitor cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

PTEN loss or PI3K/AKT signaling pathway activation correlates with human prostate cancer progression and metastasis. However, in preclinical murine models, deletion of Pten alone fails to mimic the significant metastatic burden that frequently accompanies the end stage of human disease. To identify additional pathway alterations that cooperate with PTEN loss in prostate cancer progression, we surveyed human prostate cancer tissue microarrays and found that the RAS/MAPK pathway is significantly elevated both in primary and metastatic lesions. In an attempt to model this event, we crossed conditional activatable K-rasG12D/WT mice with the prostate conditional Pten deletion model we previously generated. Although RAS activation alone cannot initiate prostate cancer development, it significantly accelerated progression caused by PTEN loss, accompanied by epithelial-to-mesenchymal transition (EMT) and macrometastasis with 100% penitence. A novel stem/progenitor subpopulation with mesenchymal characteristics was isolated from the compound mutant prostates, which was highly metastatic upon orthotopic transplantation. Importantly, inhibition of RAS/MAPK signaling by PD325901, a MEK inhibitor, significantly reduced the metastatic progression initiated from transplanted stem/progenitor cells. Collectively, these data indicate that activation of RAS/MAPK signaling serves as a potentiating second hit to alteration of the PTEN/PI3K/AKT axis and co-targeting both pathways is highly effective in preventing the development of metastatic prostate cancers.

Publication Title

Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16104
IL-1b responses in receptor-reconstituted AcP-deficient neurons
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

The purpose was to determine AcP- and AcPb-dependent gene responses to IL-1 by virally-reconstituting AcP-deficient mouse embryonic cortical neurons with CD25 (control), full length AcP, AcPb or the combination of both. A control population was transduced with a CD25-expressing virus. Half the samples were stimulated with IL-1-beta for four hours, RNA was analyzed by microarray.

Publication Title

A central nervous system-restricted isoform of the interleukin-1 receptor accessory protein modulates neuronal responses to interleukin-1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57729
Differential expression of mouse Grem1+ Vs. Grem1- bone-marrow cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The gene expression of bone marrow cells of mice enriched for

Publication Title

Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential.

Sample Metadata Fields

Sex, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact