refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE19512
Gene expression profiling of in vivo derived induced and natural FOXP3+ regulatory T cells in the mouse
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

The relative contribution of induced and natural Foxp3+ regulatory T cells (iTreg and nTreg cells, respectively) to the maintenance of tolerance is unknown. We examined their respective roles by in vivo adoptive transfer immunotherapy of newborn Foxp3-deficient BALB/c mice. Survival, weight gain, tissue infiltration, T cell activation, and the concentration of proinflammatory cytokines were used as outcome measurements. Treatment with iTreg cells alone was not successful. While effective in preventing death, treatment with nTreg cells alone was associated with chronic inflammation and autoimmunity. Outcomes markedly improved when conventional T (Tconv) cells were transferred together with the nTreg cells, where 10% of the peripheral Treg cell pool was derived by in-situ conversion. This enhancement depended upon the capacity of Tconv cells to express Foxp3.

Publication Title

A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE197751
Cigarette smoke extract disturbs mitochondria-regulated airway epithelial cell responses to pneumococci
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Chronic obstructive pulmonary disease (COPD) is a heterogenous respiratory disease mainly caused by smoking. Respiratory infections constitute a major risk factor for acute worsening of COPD symptoms or COPD exacerbation. Mitochondrial functionality, which is crucial for the execution of physiologic functions of metabolically active cells, is impaired in airway epithelial cells (AECs) of COPD patients as well as smokers. However, the potential contribution of mitochondrial dysfunction in AECs to progression of COPD, infection-triggered exacerbations in AECs and a potential mechanistic link between mitochondrial and epithelial barrier dysfunction is unknown to date. In this study, we used an in vitro COPD exacerbation model based on AECs exposed to cigarette smoke extract (CSE) followed by infection with Streptococcus pneumoniae (Sp). The levels of oxidative stress, as an indicator of mitochondrial stress were quantified upon CSE and Sp. The expression of proteins associated with mitophagy, mitochondrial content and biogenesis as well as mitochondrial fission and fusion was quantified upon CSE and Sp. Transcriptional AEC profiling was performed to identify the potential changes in innate immune pathways and correlate them with mitochondrial function. We found that CSE exposure substantially altered mitochondrial function in AECs by suppressing mitochondrial complex protein levels, reducing mitochondrial membrane potential and increasing mitochondrial stress and mitophagy. Moreover, CSE-induced mitochondrial dysfunction correlated with reduced enrichment of genes involved in apical junctions and innate immune responses to Sp, particularly type I interferon responses. Together, our results demonstrated that CSE-induced mitochondrial dysfunction may contribute to impaired innate immune responses to Sp and may thus trigger COPD exacerbation.

Publication Title

Cigarette Smoke Extract Disturbs Mitochondria-Regulated Airway Epithelial Cell Responses to Pneumococci.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact