refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE71090
Expression data from isogenic Pten WT or KO mouse T-ALLs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71087
Expression data from isogenic Pten WT or KO mouse T-ALLs treated with DBZ or DMSO
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

To investigate the underlying mechanisms mediating resistance to NOTCH inhibition in Pten-null T-ALL tumor cells we performed gene expression profiling of isogenic Pten-positive and Pten-deleted leukemia lymphoblasts after acute treatment with DBZ in vivo.

Publication Title

Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17993
Zebrafish heart regeneration
  • organism-icon Danio rerio
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Ischemic cardiopathy is the leading cause of death in the world, for which efficient regenerative therapy is not currently available. In mammals, after a myocardial infarction episode, the damaged myocardium is replaced by scar tissue featuring collagen deposition and tissue remodelling with negligible cardiomyocyte proliferation. Zebrafish, in contrast, display an extensive regenerative capacity as they are able to restore completely lost cardiac tissue after partial ventricular amputation. Due to the lack of genetic lineage tracing evidence, it is not yet clear if new cardiomyocytes arise from existing contractile cells or from an uncharacterised set of progenitors cells. Nonetheless, several genes and molecules have been shown to participate in this process, some of them being cardiomyocyte mitogens in vitro. Though questions as what are the early signals that drive the regenerative response and what is the relative role of each cardiac cell in this process still need to be answered, the zebrafish is emerging as a very valuable tool to understand heart regeneration and devise strategies that may be of potential value to treat human cardiac disease. Here, we performed a genome-wide transcriptome profile analysis focusing on the early time points of zebrafish heart regeneration and compared our results with those of previously published data. Our analyses confirmed the differential expression of several transcripts, and identified additional genes the expression of which is differentially regulated during zebrafish heart regeneration. We validated the microarray data by conventional and/or quantitative RT-PCR. For a subset of these genes, their expression pattern was analyzed by in situ hybridization and shown to be upregulated in the regenerating area of the heart. The specific role of these new transcripts during zebrafish heart regeneration was further investigated ex vivo using primary cultures of zebrafish cardiomyocytes and/or epicardial cells. Our results offer new insights into the biology of heart regeneration in the zebrafish and, together with future experiments in mammals, may be of potential interest for clinical applications.

Publication Title

Transcriptomics approach to investigate zebrafish heart regeneration.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE28783
Effect of anti-miR-33 treatment on gene expression in mouse macrophages from atherosclerotic plaques.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Inhibition of miR-33 results in increased cholesterol efflux and HDL-cholesterol levels in mice. In this study we examined the effect of miR-33 inhibition in a mouse model of atherosclerosis and observed significant reduction in atherosclerotic plaque size. At the end of the study, gene expression in macrophages from the atherosclerotic plaques was assessed.

Publication Title

Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE14495
Gene profiling of Mller glia during early stages of zebrafish photoreceptor regeneration
  • organism-icon Danio rerio
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Photoreceptor damage in adult mammals results in permanent cell loss and glial scarring in the retina. In contrast, adult zebrafish can regenerate photoreceptors following injury. By using a stable transgenic line in which GFP is driven by the cis-regulatory sequences of a glial specific marker gfap, Tg(gfap:GFP)mi2002, previous studies showed that Mller glia, the radial glial cells in the retina, proliferate after photoreceptor loss and give rise to neuronal progenitors that eventually differentiate into regenerated photoreceptors. To identify the molecular mechanisms that initiate this regenerative response, Mller glia were isolated from Tg(gfap:GFP)mi2002 fish during the early stages of regeneration after light lesion and gene expression profiles were generated by microarray analyses.

Publication Title

Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP095533
Transcriptomic, Proteomic, and Metabolomic Landscape of Positional Memory in the Caudal Fin of Zebrafish
  • organism-icon Danio rerio
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Regeneration requires cells to regulate proliferation and patterning according to their spatial position. Positional memory is a property that enables regenerating cells to recall spatial information from the uninjured tissue. Positional memory is hypothesized to rely on gradients of molecules, few of which have been identified. Here, we quantified the global abundance of transcripts, proteins and metabolites along the proximodistal axis of caudal fins of uninjured and regenerating adult zebrafish. Using this approach, we uncovered complex overlapping expression patterns for hundreds of molecules involved in diverse cellular functions, including developmental and bioelectric signaling as well as amino acid and lipid metabolism. Moreover, 32 genes differentially expressed at the RNA level had concomitant differential expression of the encoded proteins. Thus, the identification of proximodistal differences in levels of RNAs, proteins, and metabolites will facilitate future functional studies of positional memory during appendage regeneration. Overall design: RNA-seq was performed on 5 biological replicates for each of 3 positions along the proximodistal axis of the caudal fin; proximal, middle and distal (15 total samples). Each biological replicate was a pool of fin regions cut from 2 male and 2 female zebrafish.

Publication Title

Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44337
Expression data from iMyc mouse B lymphoma and human DLBCL
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Cross-species comparative gene expression profiling was performed to identify differentially expressed genes conserved in aggressive B lymphomas.

Publication Title

Identification of candidate B-lymphoma genes by cross-species gene expression profiling.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE37382
Subgroup specific somatic copy number aberrations in the medulloblastoma genome [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 285 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Affymetrix Human Gene 1.1 ST Array profiling of 285 primary medulloblastoma samples.

Publication Title

Subgroup-specific structural variation across 1,000 medulloblastoma genomes.

Sample Metadata Fields

Sex, Age

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact