refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 1 of 1 results
Sort by

Filters

Technology

Platform

accession-icon GSE26229
Transcriptional profiling of ex vivo isolated inflammed mouse lymphatic endothelial cells
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Chemokines and adhesion molecules upregulated in lymphatic endothelial cells (LECs) during tissue inflammation are believed to enhance dendritic cell (DC) migration to draining lymph nodes (dLNs), but the in vivo control of this process is not well understood. By performing transcriptional profiling of LECs isolated from murine skin, we found that inflammation induced by a contact hypersensitivity (CHS) response upregulated the adhesion molecules ICAM-1 and VCAM-1 and inflammatory chemokines in LECs. Furthermore, lymphatic lineage markers like Prox-1, VEGFR3 and LYVE-1 were significantly downregulated during CHS. By contrast, skin inflammation induced by Complete Freunds adjuvant (CFA) induced a different pattern of chemokine and lymphatic marker gene expression and almost no ICAM-1 up-regulation in LECs. In FITC painting experiments, DC migration to dLNs was more strongly increased in CFA- as compared to CHS-induced inflammation. Interestingly, DC migration did not correlate with the induction of CCL21 and ICAM-1 in LECs. However, the requirement for CCR7 signaling became further pronounced during inflammation, whereas CCR7-independent signals only had a minor role in enhancing DC migration. Collectively, these findings indicate that inflammation-induced DC migration is stimulus-dependent and only moderately enhanced by LEC-induced genes other than CCL21.

Publication Title

Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact