refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE25645
Ebf1 or Pax5 Haploinsufficiency Synergizes with STAT5 Activation to Initiate Acute Lymphoblastic Leukemia
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

STAT5 is critical for differentiation, proliferation and survival of progenitor B cells suggesting a possible role in Acute Lymphoblastic Leukemia (ALL). Herein, we show increased expression of activated STAT5 in ALL patients, which correlates with treatment outcome. Mutations in Ebf1 and Pax5, genes critical for B cell development have also been identified in human ALL. To determine whether mutations in Ebf1 or Pax5 synergize with STAT5 activation to induce ALL we crossed mice expressing a constitutively active form of STAT5 (Stat5b-CA) with mice heterozygous for Ebf1 or Pax5. Haploinsufficiency of either Pax5 or Ebf1 synergized with Stat5b-CA to rapidly induce ALL in 100% of the mice. The leukemic cells displayed reduced expression of both Pax5 and Ebf1 but this had little affect on most EBF1 or PAX5 target genes. However, a subset of these genes was deregulated and included a large percentage of potential tumor suppressor genes and oncogenes. Further, most of these genes appear to be jointly regulated by both EBF1 and PAX5. Our findings suggest a model whereby small perturbations in a self-reinforcing network of transcription factors critical for B cell development, specifically PAX5 and EBF1, cooperate with STAT5 activation to initiate ALL.

Publication Title

Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7396
TfRc Dependent Gene Expression in Embryonic Renal Cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We investigated the ability of transferrin receptor1 (TfRc) knockout cells to populate different domains of the developing kidney by using a chimeric approach. The TfRc cells developed into all segments of the developing nephron, but there was a relative exclusion from the ureteric bud and a positive bias towards the stromal compartment. Here we conducted a microarray analysis of differential gene expression between TfRc deficient and wild type (wt) cells in chimeric embryonic kidneys derived from embryos created by blastocyst injection of wt blastocysts with TfRc-/- green fluorescent protein-expressing (GFP+) embryonic stem cells.

Publication Title

Scara5 is a ferritin receptor mediating non-transferrin iron delivery.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87769
Identification of Tfcp2l1 target genes in the mouse kidney
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcription factor <i>TFCP2L1</i> patterns cells in the mouse kidney collecting ducts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24489
Effect of H11 Kinase/Hsp22 deletion in response to cardiac stress
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon

Description

The expression of the small molecular weight heat shock protein (Hsp) H11 kinase/Hsp22 (Hsp22) is restricted to a limited number of tissues, including the heart and skeletal muscle, both in rodents and in humans. We generated a mouse knockout (KO) model, and investigated the role of Hsp22 in regulating cardiac hypertrophy in response to pressure overload. We compared gene expression profiles between WT and KO mice in basal condition and three days pressure overload after transverse aortic constriction (TAC). These data illustrated a novel mechanism of Hsp22-related gene expression in response to cardiac stress.

Publication Title

H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE85325
Tfcp2l1 controls cellular patterning of the collecting duct.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression analysis of mouse kidney after conditional inactivation of transcription factor Tfcp2l1

Publication Title

Transcription factor <i>TFCP2L1</i> patterns cells in the mouse kidney collecting ducts.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact