refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 22 results
Sort by

Filters

Technology

Platform

accession-icon GSE17667
Pou5f1 transcription targets in zebrafish
  • organism-icon Danio rerio
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17657
Experiment 4: Affymetrix validation array
  • organism-icon Danio rerio
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Zebrafish embryo were analyzed at 30 and 60 % epiboly for changes in transcriptome of wild-type and MTspg mutant embryos

Publication Title

Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2873
Burden-2R01NS036193-06A1
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

These experiments are designed to discover genes that are expressed selectively by synaptic nuclei in skeletal muscle with the particular goal of identifying genes that regulate motor axon growth and differentiation.

Publication Title

CD24 is expressed by myofiber synaptic nuclei and regulates synaptic transmission.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20987
Gene expression data of BCR-ABL1 transformed B cell precursors from BCL6 wild-type and BCL6 knockout mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

To elucidate the mechanism of BCL6-mediated pre-B cell survival signaling, we investigated the gene expression pattern in BCR-ABL1-transformed BCL6+/+ and BCL6-/- B cell precursors. Pharmacological inhibition of BCR-ABL1 was performed with the BCR-ABL1 kinase inhibitor STI571 (Imatinib).

Publication Title

BCL6 is critical for the development of a diverse primary B cell repertoire.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE26396
Specific MicroRNAs Are Preferentially Expressed by Skin Stem Cells To Balance Self-Renewal and Early Lineage Commitment
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE26394
Gene Expression data of P4 stage hair follicle ORS cells from DTG (K14-rtTA,TRE-miR-125b) and control littermates
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Increasing evidence suggests that microRNAs may play important roles in regulating self-renewal and differentiation in mammalian stem cells (SCs). Here, we explore this issue in skin. We first characterize microRNA expression profiles of skin SCs versus their committed proliferative progenies and identify a microRNA subset associating with stemness. Of these, miR-125b is dramatically downregulated in early SC-progeny. We engineer an inducible mice system and show that when miR-125b is sustained in SC-progenies, tissue balance is reversibly skewed towards stemness at the expense of epidermal, oil-gland and HF differentiation. Using gain-and-loss of function in vitro, we further implicate miR-125b as a repressor of SC differentiation. In vivo, transcripts repressed upon miR-125b induction are enriched >700% for predicted miR-125b targets normally downregulated upon SC-lineage commitment. We verify some of these miR-125b targets, and show that Blimp1 and VDR in particular can account for many tissue imbalances we see when miR-125b is deregulated.

Publication Title

Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE26393
Expression data of P4 stage hair follicle early bulge and non-bulge ORS cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Increasing evidence suggests that microRNAs may play important roles in regulating self-renewal and differentiation in mammalian stem cells (SCs). Here, we explore this issue in skin. We first characterize microRNA expression profiles of skin SCs versus their committed proliferative progenies and identify a microRNA subset associating with stemness. Of these, miR-125b is dramatically downregulated in early SC-progeny. We engineer an inducible mice system and show that when miR-125b is sustained in SC-progenies, tissue balance is reversibly skewed towards stemness at the expense of epidermal, oil-gland and HF differentiation. Using gain-and-loss of function in vitro, we further implicate miR-125b as a repressor of SC differentiation. In vivo, transcripts repressed upon miR-125b induction are enriched >700% for predicted miR-125b targets normally downregulated upon SC-lineage commitment. We verify some of these miR-125b targets, and show that Blimp1 and VDR in particular can account for many tissue imbalances we see when miR-125b is deregulated.

Publication Title

Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31028
Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Mouse hair follicles (HFs) undergo synchronized cycles. Cyclical regeneration and hair growth is fueled by stem cells (SCs). During the rest phase, the HF-SCs remain quiescent due to extrinsic inhibitory signals within the niche. As activating cues accumulate, HF-SCs become activated, proliferate, and grow downward to form transient-amplifying matrix progenitor cells. We used microarrays to detect the relative levels of global gene expression underlying the states of hair follicle stem cells and their transient-amplifying progeny before differentiation.

Publication Title

Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP047410
Transcription profile of BY4741 (Wild type) during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. Wild type cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Genetic information, Subject

View Samples
accession-icon SRP047410
Transcription profile of BY4741 (Wild type) during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. Wild type cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Genetic information, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact