refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE66370
Expression and role of Galectins 1 and 3 in the lesioned brain
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring in vitro neural stem cell properties. In order to identify novel regulators of this astrocyte subset, we performed a genome-wide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the adult mouse cerebral cortex. The expression pattern was compared with astrocytes from normal cortex and adult neural stem cells isolated from the sub-ependymal zone (GSE18765). These comparisons revealed a set of genes up-regulated both in neurogenic neural stem cells and reactive astrocytes, including the lectins Galectin-1 and -3. These results, as well as the pattern of Galectin expression in the lesioned brain, led us to examine the functional significance of these lectins in brains of Galectin-1/3 double-knockout mice.

Publication Title

Astrocyte reactivity after brain injury-: The role of galectins 1 and 3.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE43581
Hepatic glucose sensing is required to preserve beta-cell glucose competence
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

We assessed the impact of glucose transporter Glut2 gene inactivation in adult mouse liver (LG2KO mice). This suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was normal early after Glut2 inactivation but intolerance developed at later time. This was caused by progressive impairment of glucose-stimulated insulin secretion even though beta-cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinate down-regulation of cholesterol biosynthesis genes in LG2KO mice. This was associated with reduced hepatic cholesterol in fasted mice and a 30 percent reduction in bile acid production. We showed that chronic bile acids or FXR agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from fxr-/- mice. Collectively, our data show that glucose sensing by the liver controls beta-cell glucose competence, through a mechanism that likely depends on bile acid production and action on beta-cells.

Publication Title

Hepatic glucose sensing is required to preserve β cell glucose competence.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact