refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE112485
Microarray expression data from FVB mice with induced hepatoblastoma (liver tumors)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Hepatoblastoma (HB) is the most common pediatric liver tumor, and there are no targeted therapies available for children with HB. We have previously developed a murine model of HB which is driven by coactivation of the oncogenes YAP1 and -catenin (CTNNB1) [Tao J, Calvisi D, Ranganathan S, et al. Gastroenterology, 2014 Sep; 147(3): 690701]. We used the Sleeping Beauty transposase system combined with hydrodynamic tail vein injection to deliver plasmids containing mutant activated forms of YAP1 (YAP S127A) and -catenin (N90 -catenin) to a small number of pericentral hepatocytes. We have shown that these few transformed hepatocytes proliferate and dedifferentiate, eventually forming histologically heterogeneous tumors that resemble various subtypes of human HB (which is also highly heterogeneous), including areas of well-differentiated fetal, crowded fetal, embryonal, and blastemal HB. Our goal was to investigate how coactivation of YAP1 and -catenin drive the dedifferentiation of hepatocytes into hepatoblast-like tumor cells over time, leading to HB tumors. In order to measure changes in gene expression during tumorigenesis in our model, we used an Affymetrix microarray to analyze isolated RNA from wild type FVB mouse livers, mouse HB tumor tissue, and non-tumor liver tissue adjacent to HB tumors.

Publication Title

Hepatocyte-Derived Lipocalin 2 Is a Potential Serum Biomarker Reflecting Tumor Burden in Hepatoblastoma.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE32574
Response of Atf3-/- and WT BMDMs to treatment with LPS for 4 h
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-loaded macrophages in the arterial wall. Intimal macrophages internalize modified lipoproteins such as oxidized LDL (oxLDL) through scavenger receptors, leading to storage of excess cholesteryl esters in lipid bodies and a "foam cell" phenotype. In addition, stimulation of macrophage Toll-like receptors (TLRs) has been shown to promote lipid body proliferation. We investigated the possibility that there are transcriptional regulators that are common to both pathways for stimulating foam cell formation (modified lipoproteins and TLR stimulation), and identified the transcription factor ATF3 as a candidate regulator.

Publication Title

ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE24295
Gene expression in epithelial and non-epithelial cells of renal origin
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

We aimed to define epithelial-specific genes in the kidney. In the developing mouse kidney at E12.5 epithelial cells are restricted to the ureteric bud, while mesenchymal cells surrounding the ureteric bud are non-epithelial. The mouse renal epithelial cell line mIMCD-3 was used to represent kidney epithelia in vitro. Gene expression was analyzed using Affymetrix microarrays in ureteric bud stalks, ureteric bud tips, and mIMCD-3 cells and compared to metanephric mesenchyme.

Publication Title

The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex.

Sample Metadata Fields

Specimen part, Cell line

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact