refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15 results
Sort by

Filters

Technology

Platform

accession-icon GSE36530
Expression data for program activation by IR-induced DNA breaks in G1 phase Murine PreB cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The objective of this set of samples is to identify genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by ionizing radiation in wild-type murine pre-B cells. The data generated in this project will be compared to the data generated in GSE9024, in which genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by the Rag proteins in murine pre-B cells were examined. In order to understand the differences between the physiologic and genotoxic responses to DSB DNA damage, we need to compare cells that are all in the same compartment of the cell cycle. We are therefore examining the response to IR-induced damage in cells that are arrested in G1, which would correspond to our previous study of G1 arrested cells with Rag-induced breaks. This will illuminate the difference directly, allowing us to better understand the signaling responses to the different types of DNA damage.

Publication Title

DNA damage activates a complex transcriptional response in murine lymphocytes that includes both physiological and cancer-predisposition programs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38409
Expression data from mouse lungs, exposed in-utero to second-hand smoke (SHS) and challenged with ovalbumin (OVA) as adults.
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

SHS exposure during pregnancy has adverse effects on offspring.

Publication Title

In utero exposure to second-hand smoke aggravates the response to ovalbumin in adult mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE9024
Gene activation by Rag-mediated DNA double strand breaks
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

The objective is to identify genes that are differentially expressed following the introduction of DNA double strand breaks (DSBs) by the Rag proteins in murine pre-B cells. Cells lacking Artemis are used since the Rag-induced DSBs will not be repaired and, thus, will provide a continuous stimulus to the cell. Cells lacking Artemis and Atm are used to determine which gene expression changes depend on Atm and cells lacking Artemis that express an I kappa B alpha dominant negative are used to determine which gene expression changes depend on NFkB.

Publication Title

DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19729
Interactions between developing B-lymphocytes and stromal cells reveal complex interactions and two-way communication
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

Full title: Genomics based analysis of interactions between developing B-lymphocytes and stromal cells reveal complex interactions and two-way communication

Publication Title

Genomics based analysis of interactions between developing B-lymphocytes and stromal cells reveal complex interactions and two-way communication.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37055
Cell-type specific postnatal developmental expression data from mouse cerebellar Purkinje and Stellate/Basket cells
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon

Description

The assembly of neural circuits involves multiple sequential steps such as the specification of cell types, their migration to proper brain locations, morphological and physiological differentiation, and the formation and maturation of synaptic connections. This intricate and often prolonged process is guided by elaborate genetic mechanisms that regulate each developmental event. Evidence from numerous systems suggests that each cell type, once specified, is endowed with a genetic program that directs its subsequent development. This cell intrinsic program unfolds in respond to, and is regulated by, extrinsic signals, including cell-cell and synaptic interactions. To a large extent, the execution of this genetic program is achieved by the expression of specific sets of genes that support distinct developmental processes. Therefore, a comprehensive analysis of the developmental progression of gene expression in synaptic partners of neurons may provide a basis for exploring the genetic mechanisms regulating circuit assembly.

Publication Title

Developmental Coordination of Gene Expression between Synaptic Partners During GABAergic Circuit Assembly in Cerebellar Cortex.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE15914
Interleukin-7 promotes monocyte/macrophage arrest on endothelial cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Background: It is recognized that atherosclerosis can regresses at least in animal models. However, little is known about the mechanisms. We induced regression of advanced atherosclerosis in apolipoprotein E deficient (APOE/) mice and studied underlying mechanisms. Unexpectedly, our study led to the role of interleukin-7 (IL-7) in atherogenesis.

Publication Title

Interleukin-7 induces recruitment of monocytes/macrophages to endothelium.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE112776
Expression data for High and Low permeable brain metastases in 231-BR mouse model
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

All highly and poorly permeable metastases from the same mouse brain were collected by laser capture microdissection. Total RNA from both metastatic lesions and immediate microenvironment was isolated from 5 mice bearing 231-BR metastases. As control 4 healthy mouse brains were included.

Publication Title

Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE54343
TSLP Expression: Analysis with a ZsGreen TSLP Reporter Mouse
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

Thymic stromal lymphopoietin (TSLP) is a type I cytokine that plays a central role in induction of allergic inflammatory responses. Its principal targets have been reported to be dendritic cells and / or CD4 T cells; epithelial cells are a principal source. We report here the development of a reporter mouse (TSLP-ZsG) in which a ZsGreen (ZsG)-encoding construct has been inserted by recombineering into a bacterial artificial chromosome (BAC) immediately at the translation initiating ATG of TSLP. The expression of ZsG by mice transgenic for the recombinant BAC appears to be a faithful surrogate for TSLP expression, particularly in keratinocytes and medullary thymic epithelials cells (mTECs). A comparison of gene expression in ZsG expressing and ZsG negative mTECs and cortical thymic epithelial cells, which are all ZsG negative, revealed that all three populations can be distinguished from one another. In particular ZsG (and TSLP) expressing mTECs and ZsG- mTECs are separable populations based on gene expression profiling. Little or no expression of ZsG is observed in bone marrow-derived mast cells or basophils or in CD45+ cells infiltrating TSLP/ZsG-expressing skin. Using the TSLP-ZsG reporter mouse, we show that TNFa and IL-4/IL-13 are potent inducers of TSLP expression by keratinocytes and that local activation of Th2 and Th1 cells induces keratinocyte TSLP expression. We suggest that the capacity of TSLP to both induce Th2 differentiation and to be induced by activated Th2 cells raises the possibility that TSLP may be involved in a positive feedback loop to enhance allergic inflammatory conditions.

Publication Title

TSLP expression: analysis with a ZsGreen TSLP reporter mouse.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE21155
Accelerated leukemogenesis by truncated CBFb-SMMHC defective in high-affinity binding with RUNX1
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Dominant RUNX1 inhibition has been proposed as a common pathway for CBF-leukemia. CBFb-SMMHC, a fusion protein in human acute myeloid leukemia (AML), dominantly inhibits RUNX1 largely through its RUNX1 high-affinity binding domain (HABD). We generated knock-in mice expressing CBFb-SMMHC with a HABD deletion, CBFb-SMMHCd179-221. These mice developed leukemia highly efficiently, even though hematopoietic defects associated with Runx1-inhibition were partially rescued.

Publication Title

Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20465
Her2/Neu breast cancer mouse model whole tissue transcriptome
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Purpose: We generated extensive transcriptional and proteomic profiles from a Her2-driven mouse model of breast cancer that closely recapitulates human breast cancer. This report makes these data publicly available in raw and processed forms, as a resource to the community. Importantly, we previously made biospecimens from this same mouse model freely available through a sample repository, so researchers can obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens.

Publication Title

Proteome and transcriptome profiles of a Her2/Neu-driven mouse model of breast cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact