refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 57 results
Sort by

Filters

Technology

Platform

accession-icon SRP346110
Anakinra restores cellular proteostasis by coupling mitochondrial redox balance to autophagy
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here we define a molecular pathway through which recombinant interleukin-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1). Anakinra promoted H2O2-driven autophagy through a xenobiotic sensing pathway involving the aryl hydrocarbon receptor that, activated through the indoleamine 2,3-dioxygenase 1-kynurenine pathway, transcriptionally activates NADPH Oxidase 4 independent of the IL-1R1. By coupling the mitochondrial redox balance to autophagy, anakinra improved the dysregulated proteostasis network in murine and human cystic fibrosis. We anticipate that anakinra may represent a therapeutic option in addition to its IL-1R1 dependent anti-inflammatory properties by acting at the intersection of mitochondrial oxidative stress and autophagy with the capacity to restore conditions in which defective proteostasis leads to human disease. Overall design: mRNA profiles of alveolar macrophages purified from C57BL/6 and Il1r1-/- mice treated or not with Anakinra

Publication Title

Anakinra restores cellular proteostasis by coupling mitochondrial redox balance to autophagy.

Sample Metadata Fields

Specimen part, Genotype, Subject

View Samples
accession-icon GSE52024
Genome wide analysis of transcriptome and microRNAs in early stage of Alzheimer's disease
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Prediction of miRNA-mRNA associations in Alzheimer's disease mice using network topology.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE52022
Genome wide analysis of transcriptome and microRNAs in early stage of Alzheimers disease (mRNA)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

We addressed the integrated analysis of mRNA and miRNA expression levels of Tg6799 AD model mice at 4 month and 8 months of age. Total 8 gene cluster modules for co-expression network were predicted from transcriptome data and 6 modules were show relation with AD or aging. We constructed early stage AD network using data integration between mRNA and miRNA profiles and predicted miRNAs strongly involved in module regulation. We found that ARRDC3 showed AD mutation dependent changes of expression and was related metabolic dysfunction in early stage AD.

Publication Title

Prediction of miRNA-mRNA associations in Alzheimer's disease mice using network topology.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE26023
Prolyl hydroxylase PHD3 is essential for hypoxic regulation of neutrophilic inflammation in humans and mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Neutrophils were isolated form peripheral blood of wildtype and Phd3 null mice, cultured for 4 hours in hypoxia (3% O2) and micro array analysis performed

Publication Title

Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP094706
CHD1 in yeast is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report quantitative transcriptome data in WT and CHD1 mutant. Overall design: RNA-seq in wild-type and CHD1 mutant.

Publication Title

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes.

Sample Metadata Fields

Genetic information, Subject

View Samples
accession-icon SRP094706
CHD1 in yeast is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report quantitative transcriptome data in WT and CHD1 mutant. Overall design: RNA-seq in wild-type and CHD1 mutant.

Publication Title

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes.

Sample Metadata Fields

Genetic information, Subject

View Samples
accession-icon SRP094706
CHD1 in yeast is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report quantitative transcriptome data in WT and CHD1 mutant. Overall design: RNA-seq in wild-type and CHD1 mutant.

Publication Title

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes.

Sample Metadata Fields

Genetic information, Subject

View Samples
accession-icon SRP094706
CHD1 in yeast is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report quantitative transcriptome data in WT and CHD1 mutant. Overall design: RNA-seq in wild-type and CHD1 mutant.

Publication Title

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes.

Sample Metadata Fields

Genetic information, Subject

View Samples
accession-icon SRP094706
CHD1 in yeast is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report quantitative transcriptome data in WT and CHD1 mutant. Overall design: RNA-seq in wild-type and CHD1 mutant.

Publication Title

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes.

Sample Metadata Fields

Genetic information, Subject

View Samples
accession-icon SRP094706
CHD1 in yeast is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report quantitative transcriptome data in WT and CHD1 mutant. Overall design: RNA-seq in wild-type and CHD1 mutant.

Publication Title

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes.

Sample Metadata Fields

Genetic information, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact