refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 36 results
Sort by

Filters

Technology

Platform

accession-icon GSE67662
FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

The Forkhead Box, FOXO1 and FOXO3, transcription factors regulate multiple functions in mammalian cells. Selective inactivation of the Foxo1 and Foxo3 genes in murine ovarian granulosa cells severely impairs follicular development and apoptosis causing infertility, and as shown herein, granulosa cell tumor (GCT) formation. Coordinate depletion of the tumor suppressor Pten gene in the Foxo1/3 strain enhanced the penetrance and onset of GCT formation

Publication Title

FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51628
Effects of acute Notch activation on the mammary epithelial compartment in vivo
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

Notch signaling is widely implicated in mouse mammary gland development and tumorigenesis. To investigate the effects of acute activation of Notch signaling in the mammary epithelial compartment, we generated bi-transgenic MMTV-rtTA; TetO-NICD1 (MTB/TICNX) mice that conditionally express a constitutively active NOTCH1 intracellular domain (NICD1) construct in the mammary epithelium upon doxycycline administration.

Publication Title

Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Time

View Samples
accession-icon GSE29083
Knockout of heterotrimeric signaling G protein beta5 impaires brain development and causes severe neurologic dysfunction in mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30083
Expression data from CD4 single positive thymocyte subsets from C57BL/6 mice of 6-8 wks of age
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

After positive selection in the thymus, the newly generated single positive (SP) thymocytes are phenotypically and functionally immature and undergo apoptosis upon antigen stimulation. In the thymic medullary microenvironment, SP cells progressively acquire immunocompetence. Negative selection to remove autoreactive T cells also occur at this stage. We have defined four subsets of CD4 SP, namely, SP1, SP2, SP3, and SP4 that follow a functional maturation program and a sequential emergence during mouse ontogeny.

Publication Title

The molecular signature underlying the thymic migration and maturation of TCRαβ+ CD4+ CD8 thymocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66382
ATF4 governs functional expansion of hematopoietic stem cells partially via Angptl3 in the fetal liver microenvironment
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66381
ATF4 governs functional expansion of hematopoietic stem cells partially via Angptl3 in the fetal liver microenvironment (array)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

In this study, we demonstrated that deletion of the activating transcription factor 4 (ATF4) resulted in severely impaired HSC expansion in the fetal liver at E12.5 and E15.5. In contrast, generation of the first HSC population in the aorta-gonad-mesonephros region at E11.5 was not significantly affected. Furthermore, the HSC-supporting ability of both endothelial and stromal cells in fetal liver was significantly compromised in the absence of ATF4. Gene profiling using RNA-seq revealed down-regulated expression of a panel of cytokines in ATF4-/- stromal cells, including angiopoietin-like protein 3 (Angptl3) and vascular endothelial growth factor-A (VEGFA).

Publication Title

ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106195
Comparison of mRNA expression between wildtype and Wnt9b-/- isolated metanphric mesenchyme from E11.5 kidneys.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Wnt9b is expressed in the ureteric bud of the kidney at all stages of development. In Wnt9b mutants, the ureteric bud forms but the metanephric mesenchyme is never induced to undergo differentiation.

Publication Title

Myc cooperates with β-catenin to drive gene expression in nephron progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13093
Feeding schedule and the circadian clock shape rhythms in hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13062
The effects of temporally restricted feeding on hepatic gene expression of Cry1, Cry2 double KO mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Restricted feeding impacts the hepatic circadian clock of WT mice. Cry1, Cry2 double KO mice lack a circadian clock and are thus expected to show rhythmical gene expression in the liver. Imposing a temporally restricted feeding schedule on these mice shows how the hepatic circadian clock and rhythmic food intake regulate rhythmic transcription in parallel

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13060
The effects of temporally restricted feeding on hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

Temporally restricted feeding is known to impact the circadian clock. This dataset shows the effects of temporally restricted feeding on the hepatic transcriptome.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact