refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE48790
Expression data from GTF2i mutated ES cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Data present the expression analysis of different mouse ES cell line with altered expression of GTF2I.

Publication Title

TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21264
Inflammation and tumor susceptibility in skin cancer
  • organism-icon Mus spretus, Mus musculus, Mus musculus x mus spretus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE12248
Genetic architecture of murine skin inflammation and tumor susceptibility
  • organism-icon Mus spretus, Mus musculus, Mus musculus x mus spretus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression in self-renewing epithelial tissues is controlled by cis- and trans-activating regulatory factors that mediate responses to exogenous agents capable of causing tissue damage, infection, inflammation, or tumorigenesis. We used network construction methods to analyze the genetic architecture of gene expression in normal mouse skin in a cross between tumor-susceptible Mus musculus and tumor-resistant Mus spretus. We demonstrate that gene expression motifs representing different constituent cell types within the skin such as hair follicle cells, haematopoietic cells, and melanocytes are under separate genetic control. Motifs associated with inflammation, epidermal barrier function and proliferation are differentially regulated in mice susceptible or resistant to tumor development. The intestinal stem cell marker Lgr5 is identified as a candidate master regulator of hair follicle gene expression, and the Vitamin D receptor (Vdr) links epidermal barrier function, inflammation, and tumor susceptibility.

Publication Title

Genetic architecture of mouse skin inflammation and tumour susceptibility.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23724
Genes differentially regulated by the glucocorticoid receptor in developing skin of the GR knock out and wt embryos.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

To understand the transcriptional program by which GR regulates skin development, we performed a microarray analysis using the skin of E18.5 GR-/- and GR+/+ mouse embryos.

Publication Title

Glucocorticoid receptor regulates overlapping and differential gene subsets in developing and adult skin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17511
Expression data from K5-IKKbeta transgenic mouse skin
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

IKKbeta is a subunit of the IkB kinase (IKK) complex required for NF-kB activation in response to pro-inflammatory signals. NF-kB regulates the expression of many genes involved in inflammation, immunity and apoptosis, and also controls cell proliferation and differentiation in different tissues; however, its function in skin physiopathology remains controversial. We here report the alterations caused by increased IKKbeta activity in basal cells of the skin of transgenic mice.

Publication Title

IKKbeta leads to an inflammatory skin disease resembling interface dermatitis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact